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Abstract—The delta robot is becoming a popular choice for
the mechanical design of fused filament fabrication 3D printers
because it can reach higher speeds than traditional serial-axis
designs. Like serial 3D printers, delta printers suffer from
undesirable vibration at high speeds which degrades the quality
of fabricated parts. This undesirable vibration has been sup-
pressed in serial printers using linear model-inversion feedfor-
ward control methods like the filtered B-splines (FBS) approach.
However, techniques like the FBS approach are computationally
challenging to implement on delta 3D printers because of their
coupled, position-dependent dynamics. In this paper, we propose
a methodology to address the computational bottlenecks by (1)
parameterizing the position-dependent portions of the dynamics
offline to enable efficient online model generation, (2) computing
real-time models at sampled points (instead of every point)
along the given trajectory, and (3) employing QR factorization
to reduce the number of floating-point arithmetic operations
associated with matrix inversion. In simulations, we report a
computation time reduction of up to 23x using the proposed
method, while maintaining high accuracy, when compared to a
controller using the computationally expensive exact LPV model.
In experiments, we demonstrate significant quality improvements
on parts printed at various positions on the delta 3D printer
using our proposed controller compared to a baseline alternative,
which uses an LTI model from one position. Through acceleration
measurements during printing, we also show that the print
quality boost of the proposed controller is due to vibration
reductions of more than 20% when compared to the baseline
controller.

I. INTRODUCTION

The delta robot is a high-speed, parallel-axis manipulator

[1], which makes it a promising candidate for increasing

throughput in additive manufacturing. However, delta robots

suffer from vibration errors that are a result of structural

flexibilities in their kinematic chain [2]; such vibration errors

can adversely impact the quality of 3D printed parts. Unfor-

tunately, delta 3D printers have not benefited from the model-

based, feedforward control techniques that were recently used

to suppress vibration on serial-axis 3D printers [3]–[6] because

of the difficulty modeling and controlling the delta’s coupled,

nonlinear dynamics. These control techniques have resulted

in up to 2x productivity increase without sacrificing accuracy

on serial-axis printers [6]. This paper aims to address the

challenges that prevent application of these control techniques

on the delta 3D printer.

Previous work on modeling and controlling delta robots

has largely been focused on rotary-joint delta robots, which

are actuated with servo motors [7]–[16]. (Most commercial

delta 3D printers are prismatic-joint delta robots and typically

use stepper motors). For servo motor delta robots, several

methods have been studied–most of which rely on state mea-

surements to estimate servo errors for accurate compensation.

A PD or PID controller is usually a key element of these

compensation methods. However, since standalone PD/PID

controllers do not consider the dynamic coupling of delta

robots, their performance is affected by the force disturbance

inputs from other kinematic chains. To address this issue,

Codourey [7] combined a lumped model of the delta manipu-

lator with a PD regulator in a computed torque (CT) control

implementation to improve the tracking error performance in

pick-and-place tasks when compared with a standalone PD

regulator. Similarly, Angel and Viola [8] proposed a fractional

PID controller combined with a CT controller. However, CT

controllers need to have complete knowledge of the robot’s

dynamics, which can be challenging to obtain efficiently [17],

and are sensitive to uncertainties and disturbance inputs. For

example, in [7], workspace accelerations, which are necessary

to calculate torques, are computed as second derivatives of

the direct-geometric model of the robot (i.e., functions of joint

positions). These calculations can be problematic when there is

noise or other inaccuracies in the measurements. Perhaps this

explains why no experiments that implement the controller

on hardware are presented in [8] (only simulations). These

challenges have led to the development of other techniques

centered on servo error estimation and disturbance rejection

[9]–[14]. These include methods like changing the PD gains

online as a function of servo error estimates [9], disturbance

rejection in the feedback loop using linear disturbance ob-

servers [10], [11], injecting inputs learned by a neural network

to compensate errors that the PD controller does not reject

[12], and using synchronization control strategies to reject

coupling disturbances in each actuator from the other actuators

[13], [14]. Furthermore, other approaches focus on tuning

trajectory-dependent PID controller gains offline to minimize

errors along a desired path that is known a priori [15], [16].

These PID gains provide reasonable tracking performance

along the trajectory but require a priori knowledge of the entire

trajectory.

The central theme of all the methods discussed above is a

dependence on feedback regulation to ease the difficulty of

efficiently and accurately modeling the delta robot. However,

most delta 3D printers cannot benefit from those methods

because they do not have sensors for feedback control. Inspired

by the feedforward CT controllers in [7] and [8], we recently

proposed an efficient framework to obtain linear parameter-

varying (LPV) models of prismatic-joint delta robots com-

monly used in 3D printers [17]. The framework uses recep-

tance coupling to split the full model of the delta robot into

sub-models that can be independently identified using empiri-

cal measurements and analytical derivations. We demonstrated
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that the model accurately captures dynamic variation across

different locations in the robot’s task space. Accordingly,

such a model allows a number of feedforward linear model-

based vibration control techniques to be applied to the delta

3D printer. Among those is a class of methods known as

model-inversion [18], which compensate vibration errors by

using the inverse of the system’s dynamics to pre-filter motion

commands. Unlike other feedforward control methods such as

smooth command generation [19], [20] and input shaping [21],

model-inversion does not introduce time delays [22] and can

theoretically lead to perfect compensation [18]. In practice,

perfect compensation is difficult to achieve due to unmodeled

errors [3] and the prevalence of nonminimum phase zeros,

which can cause oscillatory or unbounded control commands.

Nevertheless, several approximate model-inversion controllers

have been employed in the literature [18], [23], [24]. Of the

available methods (as reviewed in [18]), the filtered basis

functions (FBF) approach has been shown to be versatile,

compared to others, regarding its applicability to any linear

system dynamics [3], [4], [22], [25]–[27]. The FBF approach

expresses motion commands as a linear combination of basis

functions, forward filters the basis functions using the system’s

dynamics, and calculates the coefficients of the basis functions

that minimize motion errors. A version of FBF commonly

used for controlling manufacturing machines is the filtered

B-splines (FBS) method [3]–[6], [25], [27], where B-splines

are selected as the basis functions because they are amenable

to the lengthy motion trajectories common in manufacturing.

FBS is implemented in real-time by sequentially processing

small windows of the entire trajectory [4].

FBS has been implemented on serial-axis 3D printers, which

are modeled as linear time-invariant (LTI) systems [3]–[6],

as well as a parallel-axis LPV 3D printer–the H-frame 3D

printer [27]. In the LTI (i.e., standard) implementation of

FBS, B-splines are filtered and inverted offline to enable

fast computation of their coefficients online. For the LPV

system in [27], the authors model motion errors as a linear

relationship between the x- and y-axis (and their LTI models).

Furthermore, they approximate the dynamics as decoupled,

resulting in independent computation of B-spline coefficients

for each axis. Using these approximations, the B-splines can

also be filtered and inverted offline. However, the delta 3D

printer LPV model cannot be decoupled. Hence, its model

needs to be recomputed at each new position, rendering real-

time control with FBS computationally challenging. One must

compute the new model, use it to filter the B-splines, and invert

the filtered B-splines at every position along the trajectory.

This paper aims to address the computational challenges that

hinder application of FBS on delta 3D printers by making the

following contributions:

1) We parameterize expressions of the delta’s transfer func-

tions offline, which leads to fast computation of the model

online.

2) We select one position per window of motion trajectory

points as the position at which a model used to control

all points in the window is generated. This choice leads

to faster computation and lower memory allocation. We

also propose a method to preserve continuity in the

controller’s prediction of output trajectories when the

model switches between windows.

3) We calculate the B-spline coefficients using QR fac-

torization instead of pseudoinversion, leading to faster

computations.

The techniques we develop extend the standard FBS controller

to the delta 3D printer. Furthermore, the proposed controller

is shown to be effective at improving the quality of printed

parts on a commercial delta 3D printer.

The rest of the paper is as follows: Section II provides

a recap of the dynamic model developed in [17]; Section

III gives an overview of the standard FBS approach and

describes the extensions we propose to enable real-time control

of the delta 3D printer; Section IV validates our proposed

approach through simulations and experiments, illustrating

the effectiveness of the proposed controller to improve print

quality relative to a standard FBS controller; and Section V

concludes the paper, summarizing key insights.

II. OVERVIEW OF LPV MODEL OF DELTA 3D

PRINTER

A. Description of the delta 3D printer

As depicted in Fig. 1, three pairs of forearms on the delta

3D printer are connected to a carriage on one end and an end-

effector on the other end. The carriages translate vertically

to position one end of the forearms, which are allowed to

rotate freely about universal joints. Each carriage moves on

linear guideways and is mounted to a timing belt, which is, in

turn, connected to a base-mounted stepper motor via a motor

pulley–forming the prismatic joint. The relative position of

each carriage (i.e., the joint space) determine the Cartesian

position of the 3-DOF end-effector (i.e., the task space), which

holds a nozzle that deposits melted filament onto a stationary

bed. The parallelogram formed by each pair of forearms

guarantees that the end-effector and fixed base remain co-

planar.

B. Linear parameter-varying model

The carriage output positions of the delta 3D printer, qi, are

a function of two inputs: (a) the commanded position of each

carriage qdi
and (b) the forces Fqi

imposed on each carriage

due to the dynamics of the forearms and end-effector, where

i ∈ {A,B,C} denotes the carriages labeled A, B, and C (see

Fig. 2). Hence, the carriage output dynamics are given by

qi(s) = Gqd
(s)qdi

(s)+GFq(s)Fqi
(X,s) (1)

where s is the Laplace variable, Gqd
(s) and GFq(s) are LTI

SISO systems representing the carriage position to position

transfer function (TF) and the external force to carriage posi-

tion TF, respectively, and X = [x y z]T is the end-effector’s

position in the task space coordinates.

The coefficients of Gqd
and GFq can be identified from

measurements on the printer and the parameters of the external

forces Fqi
, which are modeled analytically, are also identified
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Figure 1. From left to right: A commercial delta 3D Printer (Monoprice Delta
Pro) with labeled components, a schematic of the belt-driven carriage system,
and the delta manipulator configuration showing the connections between
joints and links. The print volume dimensions are 270 × 270 × 300 mm.

Figure 2. Overhead view of the delta 3D printer showing the (x,y)-coordinate
locations of carriages A, B, and C, the end-effector’s position in task space
X, and the length of the forearms L. End-effector motion along a carriage’s
line-of-action results in significant change to the carriage dynamics.

from measurements and least squares estimation techniques in

[17]. The analytical model of Fqi
is obtained by considering the

inertial dynamics of the end-effector in the task space, which

are transformed into joint dynamics using the Jacobian trans-

pose matrix. A detailed formulation of this process is given in

[17]. It transforms Eq. (1) into the following expression:

q(s) = Gqd
(s)qd(s)+GFq(s)





J̄T
APA

J̄T
BPB

J̄T
CPC



W(s)J̄q(s) (2)

where Gqd
and GFq are 3 × 3 diagonal matrices that con-

tain Gqd
and GFq, respectively, as the diagonal entries, q =

[qA qB qC]
T is the carriage output position vector, qd =

[qdA
qdB

qdC
]T is the desired position vector, Pi ∈ R

3×3 is

the matrix representing the distribution of task space inertial

forces associated with carriage i, J̄i ∈R
3×1, the column vector

for carriage i extracted from the linearized Jacobian matrix,

denoted by J̄ (see [17] for details),

W(s) =





wx(s) 0 0

0 wy(s) 0

0 0 wz(s)




, (3)

and wx, wy, and wz are the flexible inertial dynamics of the

end-effector in the x-, y-, and z-axis directions, respectively.

The model can be expressed simply as

q(s) = G(s)qd(s) (4)

where

G(s) =
[

I−GFq(s)





J̄T
APA

J̄T
BPB

J̄T
CPC



W(s)J̄
]−1

Gqd
(s), (5)

yielding a linear parameter-varying (LPV) model of the delta

3D printer that can be used for linear model-inversion feedfor-

ward control. Since there are no position sensors, we assume

the parameters of G(s) can be computed using the desired

configuration instead of the output configuration, e.g., Xd

instead of X (see Fig. 3), which was a reasonable assumption

in previous work [27].

III. FEEDFORWARD CONTROL WITH FILTERED

B-SPLINES

In this section, we give an overview of the standard FBS

approach in Section III-A. Then, we discuss the process of

extending FBS by: describing the selection of a parameterized

model to filter the B-splines in Section III-B, explaining

how continuity is preserved when switching models between

windows in Section III-C, and describing how the motion

command is generated using LU and QR factorization in

Section III-D. As a visual aid, the reader can follow a flowchart

of the process of generating optimal motion commands in Fig.

3.

A. Overview of the standard FBS approach

The FBS approach (as presented in [4]) controls the lifted

system representation (LSR) of G(s) with a feedforward

controller. (See Appendix A for details on the LSR). Let

qid = [qid (t0) qid (t1) · · · qid (tE)]
T represent the entire E +

1 discrete time steps of the desired trajectory of carriage

i, which are processed in sliding windows. Assume that

time step k marks the beginning of the current window

and that the unknown modified motion command qidm,C =
[qidm

(tk) qidm
(tk+1) · · · qidm

(tk+LC
)]T is parameterized using

B-splines such that







qidm
(tk)

qidm
(tk+1)
...

qidm
(tk+LC

)







=








φm,m(tk) · · · φm+n,m(tk)
φm,m(tk+1) · · · φm+n,m(tk+1)

...
. . .

...

φm,m(tk+LC
) · · · φm+n,m(tk+LC

)








︸ ︷︷ ︸

Φ






pi,m

...

pi,m+n






︸ ︷︷ ︸

pi,C

(6)

where the (non-italicized) subscript C denotes the current

window, LC is the number of trajectory points considered

for each window, Φ is the open-ended B-spline basis func-

tions matrix of degree m [4], φ j,m(t) are real-valued basis

functions [28], j = m,m + 1, ...,m + n, pi,C is a vector of

n+1 unknown coefficients (or control points), tk = kTs is the

current time, and Ts is the sampling time (see [4] for more

3



Figure 3. Flowchart of FBS implementation on delta 3D printer. First, the B-splines are generated offline and filtered with the carriage-only position-to-
position dynamics as described Sec. III-A (left side). Online, LC points from the desired Cartesian and joint coordinates are buffered for a new window and a
representative configuration is selected from the buffer–the median configuration in this paper. Then, the representative configuration {xd,r, ...qCd ,r} is used to

compute the transfer function model coefficients of G−1
J (see Sec. III-B). This transfer function is then used to filter the offline B-splines. Finally, we compute

the approximate B-spline coefficients from the previous window to maintain continuity during switching (Sec. III-C) and calculate the modified trajectory
(Sec. III-D).

details). To capture the coupling between carriages, we define

qd,C = [qT
Ad ,C

qT
Bd ,C

qT
Cd ,C

]T , such that

qdm,C =





qAdm,C

qBdm,C

qCdm,C



=





Φ 0 0

0 Φ 0

0 0 Φ





︸ ︷︷ ︸

NC





pA,C

pB,C

pC,C





︸ ︷︷ ︸

pC

. (7)

Our objective is to minimize the tracking error, defined as

ē = qd − N̄p̄ ⇔




ēP

ēC

ēF



=





qd,P

qd,C

qd,F



−





N̄P 0 0

N̄PC N̄C 0

0 N̄CF N̄F









p̄P

p̄C

p̄F



 (8)

where subscripts P and F denote the past and future windows,

respectively,

qC = N̄Cp̄C + N̄PCp̄P (9)

represents the current output carriage motion, and the bar on

the matrices and vectors indicates that the impulse response

of the transfer function used for filtering the B-splines is trun-

cated [4]. Using local least squares, the optimal coefficients

of the current window can be computed as

p̄C = (N̄T
CN̄C)

−1N̄C

(

qd,C − N̄PCp̄P

)

(10)

= N̄
†
C

(

qd,C − N̄PCp̄P

)

(11)

where p̄P denotes the coefficients calculated in the previous

window. Note that although n coefficents are computed, only

nup are updated in each window [4].

For an LTI system, NC is pre-filtered and N̄PC and N̄
†
C

are computed offline and stored for obtaining the optimal

coefficients in every window using Eq. (11). However, for

LPV systems, filtering and inverting the (large) B-splines

matrix in real-time is computationally challenging for most

hardware processors. Constrained by the system’s computation

and memory capabilities, the rest of this section proposes

techniques to optimize the computation and memory resources

required to apply FBS to the delta 3D printer without signifi-

cantly sacrificing the achieved accuracy improvement.

B. Selecting a parameterized model for B-splines filtering

Consider the problem of filtering each column of N through

G(s), reproduced below:

G(s) =
[

I−GFq(s)





J̄T
APA

J̄T
BPB

J̄T
CPC



W(s)J̄
]−1

︸ ︷︷ ︸

G−1
J (s)

Gqd
(s). (12)

Note that G−1
J ∈ R

3×3 depends on the configuration through

the Jacobian matrix J̄, while Gqd
is not position dependent.

Hence, we can derive symbolic expressions of each transfer

function in G−1
J as functions of position. This derivation leads

to symbolic transfer functions of the form

G−1
J,AA =

bAA(x,y,z,qA,qB,qC)

a(x,y,z,qA,qB,qC)
(13)

where bAA(·) and a(·) are the numerator and denominator

of the transfer function, respectively, and the subscript “AA”

denotes values pertaining to the A-to-A carriage position

dynamics. The other 8 transfer functions (G−1
J,BA, G−1

J,CA, G−1
J,AB,

and so on) can be expressed similarly with bBA(·), bCA(·),
bAB(·), and so on. Note that all transfer functions share the
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same denominator a(·). These parameterized transfer functions

enable fast computations of the coefficients of G−1
J during real-

time control by simply substituting the corresponding values

of x, y, z, qA, qB, and qC into the symbolic expressions.

Furthermore, we can pre-filter N with Gqd
offline to obtain

N̄qd
. Then, for each window of trajectory points processed,

we filter N̄qd
with the transfer functions in Eq. (13) to obtain

[
N̄C

N̄CF

]

=












[
N̄CAA

N̄CFAA

] [
N̄CBA

N̄CFBA

] [
N̄CCA

N̄CFCA

]

[
N̄CAB

N̄CFAB

] [
N̄CBB

N̄CFBB

] [
N̄CCB

N̄CFCB

]

[
N̄CAC

N̄CFAC

] [
N̄CBC

N̄CFBC

] [
N̄CCC

N̄CFCC

]












(14)

where [N̄T
CAA

N̄T
CFAA

]T is the result of filtering the columns

of N̄qd
through G−1

J,AA, and so on for the other blocks of the

matrix.

In practice, the current and future windows are overlapped

for continuity during computation but only LC points are

updated during each sequence [4]. Therefore, each overlapped

window has 2LC trajectory points, meaning that the time

complexity for computing the transfer function coefficients is

O(2LC) (assuming parallel computation) and the space com-

plexity is O(2Lcua), where ua is the order of the transfer func-

tions. Some computers may not have enough processing power

to complete these calculations while maintaining real-time

printing–especially the smaller micro-processors commonly

used by 3D printer manufacturers. Additionally, allocating

the memory resources required to store the coefficients may

limit the computer’s ability to allocate quick-access memory

to other important functions like storing the print trajectory.

To prevent such deleterious effects, we select one point

from each window (of the first LC points) where a transfer

function is computed, which reduces the time and space

complexity to O(1) and O(ua), respectively. This trade-off is

reasonable because LC generally represents a small distance

where the dynamics do not change significantly. For example,

LC typically ranges from 100-200 points, which represents

100 to 200 ms for a standard sampling interval of 1 ms. For

most practical applications, the 3D printer will not cover large

enough distances in ≤200 ms to create significant dynamic

variation. For our implementation in Section IV, we select the

median point (i.e., the point in the middle of the window)

as the representative point. One can select other points such

as the mean point (i.e., the average point in the window for

each configuration variable, considered independently) or the

point with the minimum total Euclidean distance from all the

other points in the same window. In simulations, we found

that the tracking accuracy is not significantly different when

any reasonable central point is selected. In Section IV, we

demonstrate that selecting one point in each window does not

significantly degrade the accuracy of the controller through

simulations and experiments.

Figure 4. Illustration of the switching compensation technique to maintain
continuity described in Sec. III-C. The B-spline coefficients (or control points)
from the previous window p̄P are approximated as p̂P to maintain continuity
when the model is switched from model 1 to model 2. Note that N̄1,PCp̄P does

not have the correct dynamics for the current window and N̄2,PCp̄P creates
a discontinuity at the window boundary. The difference between the desired
trajectory and the approximate residual motion is also shown as qd,C−N̄PCp̂P.

C. Smoothly switching models between windows

One drawback to selecting a different model for each

window is that switching models can lead to discontinuities in

the controller’s predicted output trajectories. In the standard

FBS approach, continuity is preserved by using the same

LTI model to predict the trajectory for every window [4]. To

demonstrate what happens in the LPV case, suppose we used

model 1 for the past window and update it to model 2 for

the current window as shown in Fig. 4. When we switch from

model 1 to model 2, note that the prediction of the output

trajectory in the current window will be different depending

on if we use model 1 (i.e., N̄1,PCp̄P) or model 2 (i.e., N̄2,PCp̄P)

for the prediction. Since model 2 captures the dynamics in the

current window more accurately than model 1, N̄2,PC should

be used for the prediction. However, using N̄2,PC may result

in a discontinuity in the prediction of the machine’s motion

at the point where the window changes because the previous

window’s control points, p̄P, were computed using model 1.

To resolve this discrepancy, we approximate the predic-

tion by generating a set of approximate control points that

ensure continuity with the output from the past window.

The approximate control points are selected to minimize the

difference between the new prediction and the (potentially)

discontinuous prediction while preserving continuity. We write

the optimization problem as

p̂P = argmin
p̂P

‖N̄2,PCp̂P − N̄2,PCp̄P‖
2
2

s.t. N̄T
2,PC(tk)p̂P = N̄T

1,PC(tk)p̄P

N̄′T
2,PC(tk)p̂P = N̄′T

1,PC(tk)p̄P

(15)

where N̄T
1,PC(tk) and N̄T

2,PC(tk) are the first rows of N̄1,PC and

N̄2,PC in the window, respectively, N̄′T
1,PC(tk) and N̄′T

2,PC(tk)
are the first rows of N̄′

1,PC and N̄′
2,PC, respectively (which

5



are the time derivatives of N̄1,PC and N̄2,PC), and p̂P are the

approximate control points. Note that the products

N̄T
1,PC(tk)p̄P and N̄T

2,PC(tk)p̂P (16)

represent positions at the window boundary, and

N̄′T
1,PC(tk)p̄P and N̄′T

2,PC(tk)p̂P (17)

and represent velocities at the boundary. Additional kinematic

constraints, such as acceleration and jerk, can be included in

the optimization problem from Eq. (15) by taking additional

derivatives of the B-splines as described in [28] and [29]. More

kinematic constraints leads to smoother transitions when the

dynamics change significantly or when the window size is

large. In our simulations of the machine used in Section IV,

we found that position and velocity constraints led to similar

tracking accuracy when compared to optimizing Eq. (15) with

acceleration and jerk constraints. Hence, our implementation

only uses the position and velocity constraints for Eq. (15).

Using the approximate control points, the coefficients that

minimize the tracking error in the current window are obtained

by solving

p̄C = argmin
p̄C

[(

(qd,C − N̄PCp̂P)− N̄Cp̄C

)T

(

(qd,C − N̄PCp̂P)− N̄Cp̄C

)]

. (18)

Equation (18) can be computationally expensive to solve in

real-time for each window using the pseudoinverse, as done

in Eq. (11). Similarly, solving the constrained optimization

problem in Eq. (15) in real-time could be challenging. To

speed up the computations, we employ the LU and QR factor-

ization methods for solving Eqs. (15) and (18), respectively,

as discussed in the following subsection.

D. Command generation with LU and QR factorization

The optimization problem in Eq. (15) can be solved with

a number of gradient-based algorithms. For example, Matlab

provides functions fmincon and lsqlin to solve constrained op-

timization problems. However, such algorithms may require a

large number of iterations to converge to a solution, which can

stall our controller. To circumvent this problem, we can solve

the constrained least squares problem with LU factorization

by leveraging properties of the filtered B-splines. To simplify

notation, we define the following from Eq. (15):

A = N̄2,PC, b = N̄2,PCp̄P (19)

C =

[

N̄T
2,PC(tk)

N̄′T
2,PC(tk)

]

, d =

[

N̄T
1,PC(tk)p̄P

N̄′T
1,PC(tk)p̄P

]

(20)

Then, the problem can be written as

p̂P = argmin
p̂P

‖Ap̂P −b‖2
2

s.t. Cp̂P = d
(21)

We make two assumptions:

1) The stacked matrix
[

A

C

]

(22)

has linearly independent columns; and

2) C has linearly independent rows.

As discussed in [22], the filtered B-splines satisfy the above

assumptions with high probability and, in the case they do not,

the B-splines can be freely selected by the user to satisfy the

assumptions. Then, we can construct the Lagrangian,

L (p̂P,λ ),
1

2
‖Ap̂P −b‖2

2 +λ T (Cp̂P −d), (23)

where λ is a set of Lagrange multipliers, and find where its

partial derivatives equal zero to obtain the following linear

system
[

AT A CT

C 0

][
p̂P

λ

]

=

[
AT b

d

]

. (24)

Note that the matrix
[

AT A CT

C 0

]

(25)

is nonsingular when the above assumptions hold. Therefore,

the linear equation given by Eq. (24) can be efficiently solved

with LU factorization [30].

We also use QR factorization to efficiently compute the con-

trol points. Using the pseudoinverse to solve the optimization

problem in Eq. (18) requires the following number of floating-

point operations (flops) [30]:

N̄T
CN̄C : LCn2 flops (26)

(N̄T
CN̄C)

−1 : n3 +LCn2 flops (27)

N̄Cq̃d,C : n3 +LCn2 +2LCn flops (28)

(N̄T
CN̄C)

−1
(

N̄Cq̃d,C

)

: n3 +LCn2 +4LCn flops. (29)

where q̃d,C = qd,C − N̄PCp̂P. By factoring

N̄C = QR (30)

with the modified Gram Schmidt algorithm [31], where Q ∈
R

LC×LC is an orthogonal matrix (i.e., QT Q= I) and R∈R
LC×n

is an upper triangular matrix, the problem in Eq. (18) can be

written as

Rp̄c,C = QT q̃d,C (31)

which can be solved using backward substitution. The number

of operations required using this method are

N̄C = QR : LCn2 flops (32)

w = QT q̃d,C : LCn2 +2LCn flops (33)

Rp̄c,C = w : n2 +LCn2 +2LCn flops. (34)

Note that the QR factorization solution is more efficient to

compute than the pseudoinverse.
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Figure 5. Trajectory of a butterfly used for simulations overlaid on the task
space of the delta 3D printer. The butterfly spans x ∈ [−82,82] mm, y ∈
[−77,23] mm with a maximum motion speed of 150 mm/s and a maximum
acceleration of 20 m/s2.

IV. SIMULATION AND EXPERIMENTAL

VALIDATION

A. Simulation validation

In this subsection, we focus on simulations of the MP

Delta Pro 3D printer from Fig. 1. The simulation model is

used to validate our assumptions about computation time and

preserved accuracy of the controller proposed in Section III.

We evaluate the performance of the following controllers:

(a) a controller where the transfer functions are computed in

matrix form using Eq. (4) for all points in the window

and the coefficients are calculated with the pseudoinverse;

(b) a controller that is the same as controller (a), except the

transfer functions are computed using the parameterized

model (Sec. III-B);

(c) a controller that is the same as controller (b), except the

transfer functions are computed for only one point in the

window–without the switching compensation discussed in

Sec. III-C;

(d) a controller that is the same as controller (c), except with

the switching compensation; and

(e) a controller that is the same as controller (d), except

the coefficients are calculated with QR factorization (our

proposed controller).

By adding the proposed modifications separately, we can

distinguish the computational efficiency and accuracy effects

of each modification. Each controller’s performance is com-

pared to a baseline controller–the standard FBS controller

using an LTI model for the carriages at (x,y) = (0,0) mm.

Without a model for the position-dependent dynamics, the

control designer must use one LTI model for FBS and a

reasonable choice is the model at the center of the task space.

The simulations are conducted using the trajectory of a

butterfly shown in Fig. 5, which spans x ∈ [−83,83] mm,

y ∈ [−77,23] mm with a maximum speed of 150 mm/s and

a maximum acceleration of 20 m/s2. The trajectory lasts 5

seconds with a sample time of 1 ms (i.e., it contains 5,000

points). The LSR of G(s) is computed using the known

trajectory points and used to simulate the system’s response.

Parameter-varying compensation for all points (controllers (a)

and (b)) is implemented by computing a point-by-point LSR

matrix for each window. In other words, we compute the

transfer function at each point in the window and compute its

impulse response, which becomes the time-shifted columns

of the LSR matrix (see Appendix A). For the single point

compensation (controllers (c)-(e)), we compute the transfer

function and impulse response for the median point in the

window, whose time-shifted impulse response is repeated to

construct the LSR matrix for each window. All controllers

use B-spline basis functions of degree m = 5, a window size

LC = 196 points, number of B-spline coefficients n = 44, and

number of updated coefficients nup = 22. The window size

is determined by the amount of time required for the impulse

response of a transfer function (IIR filter) to settle close to zero

(see [4]). Since the dynamics vary for the delta 3D printer, we

construct a grid of positions in the reachable workspace that

are 5 mm apart, compute the impulse response for the transfer

function in each position, and use the worst-case settling time

to determine the LC parameter for all windows. The number

of B-spline coefficients is computed from the window length

as described in [4].

The simulations were run in Matlab (version R2022a) on a

64-bit Microsoft Surface Book with an Intel Core i5-6300U

CPU processor and 8 GB of RAM. The computation time of

the entire modified trajectory and root-mean-square (RMS) of

the contour error across the trajectory points for each controller

are reported in Table I. The percent difference of the RMS

contour error compared to the baseline controller simulation

is also reported and the contour error comparison is shown in

more detail in Fig. 6. The RMS contour error of the baseline

controller is 11.1 µm and the trajectory is computed in 45 ms

because the filtering and inversion is completed offline. The

RMS error of the exact LPV model is almost 30 times less

at 0.4 µm. However, note that the computation of the matrix

model online is much larger (820 s), which is also about 4

times greater than the computation time of the parameterized

model (226 s) without any change in the RMS error. When we

compute the model for a single point in each window, we can

reduce the computation time by about 20 times (to 10 s) but at

a cost of about 10x increase in RMS contour error (3.2 µm).

The accuracy is improved to only be about 1.3x worse than the

exact model (about 0.5 µm) when the switching compensation

is implemented.

In Fig. 6, there is a spike in the contour error of controller

(c) (no switching compensation) around 2 seconds into the mo-

tion. The spike represents a difficult portion of the trajectory–

the bottom right of the butterfly wing–between which a switch

in models occurs for controllers (c)-(e). Here, the points are

on the far side of carriage B’s line of action (see Figs. 2 and

5) which, as discussed in [17] and in the following subsection,
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Table I
SIMULATION RESULTS COMPARING COMPUTATION TIME AND ACCURACY OF DIFFERENT CONTROLLERS FOR GENERATING MODIFIED BUTTERFLY

TRAJECTORY

Computation Time RMS Contour Error % Improvement from Baseline

(*) Baseline LTI, standard FBS controller 0.044 s 11.13 µm –
(a) Matrix TFs, all points, pseudoinverse 820.06 s 0.38 µm 96.6%
(b) Parameterized TFs, all points, pseudoinverse 226.30 s 0.38 µm 96.6%
(c) Parameterized TFs, single point, pseudoinverse 9.86 s 3.21 µm 71.1%
(d) Same as above with switching compensation 13.46 s 0.53 µm 95.3%
(e) Same as above with QR factorization 9.65 s 0.53 µm 95.3%

Figure 6. Contour error of the modified trajectories generated by the baseline
controller (solid blue line) and controllers (b) using all trajectory points (solid
purple line), (c) a single point without switching compensation (dotted red
line), (e) and a single point with switching compensation (dash-dotted yellow
line).

is prone to larger dynamic variation. (The symmetric points

on the bottom left side of the butterfly are not on the far

side of carriage C’s line of action and, thus, have less dy-

namic variation). Note that the errors increase for both single

point controllers but are exacerbated by the controller without

switching compensation. Situations like this one illustrate the

utility of using switching compensation for changing models.

Finally, note that the computation time reduces by 28% using

QR factorization instead of the pseudoinversion when the

controller has switching compensation (from about 13.5 to 9.7

s). Overall, the accuracy of the single point approach is worse

than using all points, but the overall accuracy improvement

is acceptable given the 23x decrease in computation time

compared to using the parameterized exact controller (b),

which would be challenging to implement on hardware in

real-time. In the following subsection, our experiments on the

delta 3D printer show that our proposed controller results in

significant accuracy improvements compared to the baseline.

B. Experimental validation

In this subsection, we discuss the results of printing a stan-

dard “calibration cube”1 on the delta 3D printer of Fig. 1 using

two control strategies: the baseline controller and our proposed

controller (case (e) above). Our aim is to demonstrate the

utility of our contributions by comparing: (a) the visual quality

of parts printed with our controller and the baseline controller

at different positions and (b) acceleration amplitudes of the

1The standard XYZ calibration cube used in this paper can be found at:
https://www.thingiverse.com/thing:1278865

carriages during the execution of each print to understand the

effects of our proposed controller.

For the experiments, we locate the center of the calibration

cube at the following positions: (x,y) = (0,0), (−80,0),
(40,−69), and (40,69) mm. Each position, except the origin,

is chosen to target each carriage independently; they are

located 80 mm from the origin along the far side of the

respective carriage’s line-of-action (see Fig. 2). As shown

in Figs. 2 and 7, the position (−80,0) mm primarily tests

variation in carriage A’s dynamics, (40,−69) mm primarily

tests variation in carriage B’s, and (40,69) mm primarily tests

variation in carriage C’s [17]. We set the maximum speed and

acceleration at 150 mm/s and 20 m/s2, respectively. Both the

baseline and proposed controllers are implemented in Matlab

Simulink, which sends motion commands through a dSPACE

MicroLabBox to Pololu DRV8825 stepper motor drivers to

operate the stepper motors on the delta 3D printer. For the

baseline controller, we fit the measured transfer functions at

(0,0) mm (see Fig. 7) as the LTI model for the standard FBS

approach. The proposed controller uses the LPV model and

FBS implementation described in Secs. II and III, respectively.

For comparison, we also print the calibration cube at the same

positions without vibration compensation.

Figures 8 and 9 show images of the X and Y faces of the

calibration cube, respectively, manufactured at the different

positions. A visual inspection of the parts reveals the following

observations:

1) In the uncompensated parts, there are vibration marks at

the edges where there is a change of direction, which are

largely eliminated with FBS compensation.

2) The quality of the parts printed at (0,0) mm are similar

for both the baseline and proposed controllers.

3) The surface quality of the part printed at (−80,0) mm

with the baseline controller is worse than the quality of

the part printed with the proposed controller.

4) The quality of the parts printed at (40,−69) mm are

similar for both controllers.

5) The part printed at (40,69) mm with the baseline con-

troller drifts from its starting position in the middle of the

print, while the part printed with the proposed controller

stays aligned.

6) The quality of the parts printed with the proposed con-

troller are always either similar to or better than the parts

printed with the baseline controller.
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Figure 7. Measured frequency response functions of the carriage position dynamics at (x,y) = (0,0) mm (blue solid lines), (−80,0) mm (red dashed lines),
(40,−69) mm (yellow dash-dotted lines), and (40,69) mm (indigo dotted lines) of the Monoprice Delta Pro 3D printer. The black dashed lines indicate the
fitted transfer functions of the baseline model (at (x,y) = (0,0) mm) that is used for the baseline controller.

Figure 8. X-axis face of calibration cubes fabricated with the baseline and proposed controllers centered at different positions that target different carriages.
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Figure 9. Y-axis face of calibration cubes fabricated with the baseline and proposed controllers centered at different positions that target different carriages.

Observation 2 is expected since the baseline controller

performs optimally at (0,0) mm and observation 3 is expected

due to the model mismatch. However, observation 4 appears

to be an anomaly. A closer look at carriage B’s FRFs in Fig. 7

reveals that the measured FRFs from (0,0) and (40,−69) mm

have similar resonance frequencies. Also note that carriages A

and C have measured FRFs from (0,0) and (40,−69) mm that

also have similar resonance frequencies. Hence, the baseline

controller is able to adequately compensate vibrations while

printing at (40,−69) mm. The drifting signal in observation

5 is due to the baseline controller overcompensating for the

fast changes in acceleration on the top half of the Y-face

of the cube. Note that the bottom half of the Y-face only

has one indentation, while the top half has two indentations

in succession, which increases the high frequency content of

the acceleration profile. Figure 10 shows the modified motion

commands of the baseline and proposed controllers in this

region of the print, which shows that the commanded motion

of the baseline controller drifts from the desired command

while the proposed controller does not. Overcompensation

occurs because the baseline model for carriage C (at (0,0) mm

in Fig. 7) shows that the amplitude of high frequency content

is reduced. Hence, the baseline controller attempts to increase

the input of the high frequency commands to achieve the

desired motion. However, we know from the measured FRF

at (40,69) that the command does not need to be amplified.

Thus, the proposed controller, with more accurate dynamics,

can compensate correctly.

To quantify the reduction of vibration-induced acceleration,

we measure the acceleration of the carriages during each print

using the vertical (z-) axis of an ADXL335 3-axis accelerom-

Table II
ROOT MEAN SQUARE (RMS) ACCELERATION OF CARRIAGES DURING

PRINT OF CALIBRATION CUBE

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80,0) – Car. A 3.73 (+0.38) 3.24 (-0.11) 3.35
(40,−69) – Car. B 4.04 (+0.08) 3.95 (-0.01) 3.96
(40,69) – Car. C 4.16 (+0.35) 3.82 (+0.01) 3.81

Table III
MAXIMUM ACCELERATION OF CARRIAGES DURING PRINT OF

CALIBRATION CUBE

Baseline [m/s2] Proposed [m/s2] Desired [m/s2]

(−80,0) – Car. A 22.46 (+4.57) 17.04 (-0.85) 17.89
(40,−69) – Car. B 24.67 (+0.81) 24.05 (+0.19) 23.86
(40,69) – Car. C 25.53 (+1.67) 23.68 (-0.18) 23.86

eter from Sparkfun Electronics and compare the acceleration

for both controllers to the acceleration of the desired trajectory.

Tables II and III give the RMS and maximum values of

the carriage acceleration, respectively, during the top half of

the calibration cube print. In absolute terms, the proposed

controller accelerations are closer to desired acceleration in all

cases, illustrating reduction in vibration errors. The maximum

difference of deviation reduction of the proposed controller

compared to the baseline controller is 8.9% for carriage C at

(40,69) in the RMS acceleration and 20.8% for carriage A at

(−80,0) in the maximum acceleration. Following the result

from observation 4, we note that the least deviation from the

desired acceleration occurs for carriage B at (40,−69) for both

RMS and maximum acceleration.
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Figure 10. Commanded motion from the baseline (blue solid line) and proposed (red dash-dot line) controller during the drifting motion for the baseline
controller while fabricating the part at (x,y) = (40,69) mm (triggering carriage C). Note that the baseline model commands increasing deviations from the
nominal position (yellow dashed line), which leads to the drifting part in Figs. 8 and 9. The baseline controller creates the drifting commands because of the
differences between the baseline frequency response function and the actual frequency response function at (40,69) mm.

V. CONCLUSIONS

This paper proposes practical techniques to enable real-time,

accurate vibration compensation on the prismatic-joint delta

3D printer. Previous work on improving accuracy of delta

manipulators has focused on servo motor actuated machines

and relies on sensor measurements and feedback control. For

most delta 3D printers, feedback sensors are not available so

we must employ feedforward control with an accurate model.

To achieve this objective, we aimed to use an accurate LPV

model of the delta 3D printer we recently proposed in [17]

with the model-inversion based FBS approach. However, the

need to recompute the model and controller at each new

configuration during real-time control is computationally chal-

lenging. Therefore, we propose the following to decrease the

computational burden: (1) parameterization and pre-filtering of

portions of the model for fast online operations, (2) computa-

tion of the model at sampled points along the trajectory (while

preserving continuity of the controller’s predictions when the

model changes), and (3) utilization of matrix methods that

yield faster matrix inversion.

Simulations are used to assess the trade off between com-

putation time and accuracy. We report that the techniques

presented in this paper result in a 23x reduction in computation

time from the exact parameter varying controller which re-

computes the model/controller at every point. Thus, our ap-

proximations save significant computational effort while only

increasing contour errors by about 1.3x compared to the exact

controller. Images of parts from our experiments also show an

overall improvement in the quality of parts printed at different

locations using the proposed controller compared to using a

baseline controller optimized for the center of the workspace.

Furthermore, acceleration measurements during printing show

more than 20% reduction of vibration-induced accelerations

for the proposed controller when compared to the baseline.

This work shows that we can take advantage of the high

speed motion of the delta 3D printer (compared to traditional

3D printers) and apply feedforward controllers like FBS to

maintain accuracy during vibration-prone motion. This paper’s

contributions bring us one step closer to the vision of high

speed and high quality additive manufacturing.

APPENDIX

A. Lifted system representation of a digital filter

As discussed in [22], consider digital filter p, input signal

u, and output signal y defined as:

p ={p−2 p−1 p0 p1 p2} (35)

u ={u0 u1 u2} (36)

y ={y0 y1 y1} (37)

Signals y and u and filter p are related by the convolution

operator as follows:

y = u∗ p (38)

From Eqs. 35-38,

y0 =p0u0 + p−1u1 + p−2u2 (39)

y1 =p1u0 + p0u1 + p−1u2 (40)

y2 =p2u0 + p1u1 + p0u2 (41)

This can be expressed in matrix form as





y0

y1

y2



=





p0 p−1 p−2

p1 p0 p−1

p2 p1 p0









u0

u1

u2



 (42)

Note that the main diagonal element (p0) represents the

influence of the current input on the current output; the first

upper diagonal element (p−1) represents the influence of the

succeeding input on the current output and the second upper

diagonal element (p−2) represents the influence of the second

succeeding input on the current output. Similarly, the first (p1)

and second lower (p2) elements represent the influence of

the first and second preceding inputs on the current output,
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respectively. Hence, the discrete time transform of p obtained

from Eq. 42 is given by

p2z−2 + p1z−1 + p0z0 + p−1z1 + p−2z2 (43)

which is in accordance with the time-domain definition given

in Eqs. 35-37.
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