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Abstract: In this study, we investigate the application of supervised machine learning 

algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) 

specimens fabricated using the Fused Deposition Modeling (FDM) process. A total of 31 PLA 

specimens were prepared, with Infill Percentage, Layer Height, Print Speed, and Extrusion 

Temperature serving as input parameters. The primary objective was to assess the accuracy 

and effectiveness of four distinct supervised classification algorithms, namely Logistic 

Classification, Gradient Boosting Classification, Decision Tree, and K-Nearest Neighbor, in 

predicting the UTS of the specimens. The results revealed that while the Decision Tree and 

K-Nearest Neighbor algorithms both achieved an F1 score of 0.71, the KNN algorithm 

exhibited a higher Area Under the Curve (AUC) score of 0.79, outperforming the other 

algorithms. This demonstrates the superior ability of the KNN algorithm in differentiating 

between the two classes of ultimate tensile strength within the dataset, rendering it the most 

favorable choice for classification in the context of this research. This study represents the 

first attempt to estimate the UTS of PLA specimens using machine learning-based 

classification algorithms, and the findings offer valuable insights into the potential of these 

techniques in improving the performance and accuracy of predictive models in the domain of 

additive manufacturing. 
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1. Introduction 

In recent years, Artificial Intelligence (AI) has emerged as a transformative force across 

various industries, revolutionizing processes and driving innovation. The manufacturing and 

health sector is no exception, as it has experienced significant benefits from the integration of 

AI-driven technologies [1-4]. Among the most significant benefits of AI in manufacturing is 

its capacity to enhance efficiency and productivity. AI-enabled systems can process enormous 

volumes of data in real-time, allowing manufacturers to detect patterns and trends that can be 

harnessed for process improvement. Machine learning algorithms, a branch of AI, can evolve 

and refine over time, making manufacturing systems increasingly adept at forecasting 

equipment malfunctions and reducing downtime [5-9]. 
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In a study conducted by Du et al. [10], the researchers examined the conditions leading to 

void formation in friction stir welded joints, as these voids negatively impact the mechanical 

properties of the joints. To investigate this phenomenon, the authors employed a decision tree 

and a Bayesian neural network. They analyzed three types of input datasets, including 

unprocessed welding parameters and computed variables derived from both analytical and 

numerical models of friction stir welding. In a study conducted by Roman Hartl et al. [11]., 

the authors investigated the application of Artificial Neural Networks (ANNs) in analyzing 

process data from friction stir welding to predict the quality of the resulting weld surface.  

Artificial Intelligence is gaining interest in additive manufacturing industries also like other 

industries. Du et al. [12] demonstrated that employing a synergistic approach that combines 

physics-informed machine learning, mechanistic modeling, and experimental data can 

mitigate the prevalence of common defects in additive manufacturing. By scrutinizing 

experimental data on defect formation for widely used alloys, which was sourced from 

disparate, peer-reviewed literature, the researchers were able to identify several crucial 

variables that elucidate the underlying physics behind defect formation. Maleki et al. [13] 

employed a machine learning (ML)-based methodology to explore the relationship between 

residual stress, hardness, and surface roughness (influenced by the applied post-treatments) 

and the depth of crack initiation sites as well as the fatigue life of post-treated additive 

manufactured samples. There has been other various research works which implemented 

machine learning in the domain of structural integrity [14-22].  

The relationship between structural integrity and ultimate tensile strength (UTS) is significant 

in the case of fused deposition modeled (FDM) polylactic acid (PLA) specimens. Structural 

integrity pertains to the capacity of a structure or material to endure loads and retain its form 

and functionality without experiencing failure. It encompasses various aspects such as 

strength, stiffness, durability, and resistance to deformation or breakage. Ultimate tensile 

strength (UTS) is a measure of the maximum stress a material can withstand before it fails 

under tension. It represents the peak load-bearing capability of a material and indicates its 

ability to resist being pulled apart or stretched. UTS is typically determined through tensile 

testing, where a specimen is subjected to progressively increasing tensile forces until it 

fractures. When it comes to FDM PLA specimens, the structural integrity of the printed parts 

is influenced by multiple factors, including the design, print settings, material properties, and 

post-processing techniques. The ultimate tensile strength of the PLA specimens serves as a 

vital indicator of their capacity to bear loads and their resistance to tension. 

This study marks the first endeavor to implement supervised machine learning classification 

algorithms for predicting the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) 

specimens produced via the Fused Deposition Modeling (FDM) process. We examined the 

applicability of four distinct supervised classification algorithms i.e., Logistic Classification, 

Gradient Boosting Classification, Decision Tree, and K-Nearest Neighbor in estimating the 

UTS of 31 PLA specimens, using Infill Percentage, Layer Height, Print Speed, and Extrusion 

Temperature as input parameters. 
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2. Problem Statement  

Accurately estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) 

specimens created through the Fused Deposition Modeling (FDM) process is crucial for 

ensuring optimal performance and reliability in various applications. Traditional methods for 

determining UTS tend to be labor-intensive and typically necessitate destructive testing. 

Consequently, there is a growing demand for a more efficient, non-destructive approach to 

predict UTS by leveraging advancements in machine learning. 

This study aims to evaluate the accuracy and efficacy of four distinct supervised machine 

learning classification algorithms i.e. Logistic Classification, Gradient Boosting 

Classification, Decision Tree, and K-Nearest Neighbor in estimating the UTS of PLA 

specimens. Input parameters include Infill Percentage, Layer Height, Print Speed, and 

Extrusion Temperature. The primary challenge is to identify which algorithm, if any, exhibits 

superior performance in differentiating between the two classes of ultimate tensile strength 

within the dataset, ultimately determining the most suitable choice for classification in this 

research context. Furthermore, this study seeks to investigate the potential of machine 

learning-based classification algorithms in enhancing the performance and precision of 

predictive models within the additive manufacturing domain. As the first attempt to estimate 

the UTS of PLA specimens using these techniques, this research offers valuable insights and 

contributes to the advancement of knowledge in this field. 

 

3. Experimental Procedure 

The Fused Deposition Modeling (FDM) process shown in Figure 1 works by creating three-

dimensional objects layer by layer, using thermoplastic materials like polylactic acid (PLA). 

In this method, a computer-aided design (CAD) model is prepared and converted into a 

compatible file format, which is then sliced into thin horizontal layers by specialized 

software. These layers generate a set of instructions, or G-code, for the 3D printer to follow 

during the printing process. The printer's extruder heats the PLA filament, a biodegradable 

material derived from renewable sources, and deposits it through a nozzle onto the build 

platform. As the extruder moves in the X and Y directions and the build platform moves in 

the Z direction, the object is formed layer by layer. The PLA material fuses with the previous 

layer and solidifies as it cools, creating the final 3D object. Support structures may be needed 

during printing for complex geometries or overhangs, and post-processing steps such as 

sanding or painting can be employed to achieve the desired finish. 

Fused Deposition Modeling (FDM) samples were fabricated utilizing a Creality Ender 3 

machine with a bed size of 220 x 220 x 250 mm shown in Figure 2. The dimensions of the 

tensile specimens measured 63.5 x 9.53 x 3.2 mm, adhering to the ASTM D638 standard 

requirements as shown in Figure 3.  The part design was created and subsequently converted 

into an STL file using CATIA software. The STL file was then processed into a machine-

readable G-code file with the assistance of the Cura engine within Repetier software to build 

slicing of the file as shown in Figure 4.  
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In this research study, the dataset shown in Table 1 was initially converted into a CSV file 

format to facilitate its import into Google Colaboratory (Colab) for the development of 

machine learning-based classification algorithms using Python programming. Four distinct 

classification algorithms were employed for analysis, including Decision Tree, K-Nearest 

Neighbor (KNN), Logistic Regression, and Gradient Boosting Classifier. The material's 

ultimate tensile strength (UTS) served as the basis for classification. If the UTS was below 

80% of the base material's UTS, it was labeled as '0', while a value above 80% of the base 

material's UTS was labeled as '1'. This labeling approach allowed for the differentiation 

between materials with relatively lower and higher tensile strengths. 

To evaluate and compare the performance of these classification models, two key metrics 

were considered: the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC-

ROC) and the F1 score. The AUC-ROC score measures the classifier's ability to discriminate 

between the two classes, with a higher score indicating better performance. On the other 

hand, the F1 score represents the harmonic mean of precision and recall, providing a balanced 

evaluation of the model's accuracy in terms of both false positives and false negatives. By 

comparing the AUC-ROC and F1 scores of the four classification algorithms, this research 

aims to identify the most suitable algorithm for predicting the ultimate tensile strength of 

materials based on the given dataset, ultimately contributing to a better understanding of 

material properties in the context of additive manufacturing. 

 

 

 

                                         Figure 1. Schematic representation of Fused Deposition Modeling process 
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                                                                         Figure 2. Ender 3 3D printer 
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                                                           Figure 3. Schematic sketch of Tensile Specimen 
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                                                                                       b) 

                                           Figure 4. Tensile Specimen a) before slicing, b) after slicing 

 

 

 

 

 

 

 

                                                            Table 1. Experimental Dataset 

Infill percentage 

(%)  

Layer height (mm) Print speed 

(mm/sec) 

Extrusion temp 

(℃) 

Ultimate Tensile 

Strength (MPa) 

78 0.32 35 220 46.17 

10.5 0.24 50 210 42.78 

33 0.16 35 220 45.87 

33 0.32 35 200 41.18 

33 0.16 65 200 43.59 

100 0.24 50 210 54.2 

78 0.16 35 200 51.88 

33 0.32 65 200 43.19 

78 0.32 65 200 50.34 

33 0.16 65 220 45.72 

78 0.16 35 220 53.35 

55.5 0.24 50 210 49.67 

33 0.32 35 220 45.08 

55.5 0.24 50 190 47.56 
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55.5 0.24 50 210 48.39 

78 0.32 65 220 46.49 

55.5 0.24 50 210 47.21 

55.5 0.24 50 210 48.3 

55.5 0.24 50 230 50.15 

33 0.32 65 220 43.35 

55.5 0.24 50 210 45.33 

55.5 0.24 80 210 45.56 

78 0.16 65 200 49.84 

55.5 0.24 20 210 48.51 

55.5 0.08 50 210 42.63 

55.5 0.4 50 210 42.87 

55.5 0.24 50 210 47.14 

78 0.32 35 200 45.17 

55.5 0.24 50 210 47.07 

78 0.16 65 220 50.99 

33 0.16 35 200 200 

 

4. Results and Discussion 

4.1 Metric Features used in the present work 

A confusion matrix serves as an essential evaluation tool for classification algorithms. It is a 

table that compares the true labels of a given set of test data with the predicted labels 

generated by the algorithm as shown in Figure 5. The matrix consists of two rows and two 

columns, with the rows indicating the true labels and the columns representing the predicted 

labels. The four cells of the matrix reveal the number of instances that fall into each possible 

combination of true and predicted labels. 

The diagonal cells of the confusion matrix represent the number of instances where the 

predicted label matches the true label, whereas the off-diagonal cells signify the number of 

instances where the predicted label is different from the true label. This provides insight into 

the performance of the algorithm, including the true positive rate (TPR), false positive rate 

(FPR), precision, recall, and F1 score. 
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                                                                         Figure 5. Nomenclature of Confusion Matrix 

The TPR refers to the ratio of true positives out of all positive instances in the dataset shown 

in Equation 1, while the FPR represents the ratio of false positives out of all negative 

instances in the dataset shown in Equation 2. Precision is the ratio of true positives out of all 

predicted positives as shown in Equation 3, whereas recall is the ratio of true positives out of 

all actual positives as shown in Equation 4. The F1 score denotes the harmonic mean of 

precision and recall as shown in Equation 5 and can be used to evaluate the overall 

performance of the classification algorithm. 

 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                                                                                    (1) 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁                                                                                                                    (2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃                                                                                                           (3) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                                                                                 (4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙                                                                                    (5) 

 

The Receiver Operating Characteristic (ROC) curve serves as a graphical evaluation method 

for binary classification models, illustrating the relationship between the true positive rate 



10 

 

(TPR, or sensitivity) and the false positive rate (FPR, or 1-specificity) across a range of 

decision thresholds. The Area Under the Curve (AUC) is a scalar metric that quantifies the 

overall performance of the classifier by measuring the area beneath the ROC curve. 

The process of constructing the ROC curve involves plotting TPR against FPR for varying 

decision thresholds. To achieve this, classifier output probabilities are arranged in descending 

order, and the decision threshold is shifted from the highest to the lowest probability. For 

each threshold, TPR and FPR are calculated and plotted as a point on the ROC curve. 

The AUC metric is computed as the area beneath the ROC curve, with a range of 0 to 1, 

where a higher value signifies superior classifier performance. An AUC of 0.5 corresponds to 

a random classifier, while an AUC of 1 implies a flawless classifier. The AUC can be 

determined through trapezoidal or rectangular approximation techniques. The trapezoidal 

method entails summing the areas of trapezoids formed by consecutive points on the ROC 

curve depicted in Equation 6.  

 𝐴𝑈𝐶 = ∑ 𝐹𝑃𝑅(𝑖+1)−𝐹𝑃𝑅(𝑖)×(𝑇𝑃𝑅(𝑖+1)+𝑇𝑃𝑅(𝑖))2𝑁−1𝑖=1                                                                 (6) 

 

Now let’s discuss about the obtained values of the metric features by individual algorithms in 

the next subsection.  

 

4.2 Logistic Classification  

Logistic classification is a way to predict whether something belongs to one category, or 

another based on a set of features. In the present study, it has been used for prediction 

whether the UTS of the additive manufactured specimen is greater or less than the 80 % of 

the UTS of the based material as shown in Equation 7.  

 𝑈𝑇𝑆 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛𝑠 (𝑦) ={0, 𝑖𝑓 𝑦 < 80% 𝑜𝑓 𝑡ℎ𝑒 𝑈𝑇𝑆 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1, 𝑖𝑓 𝑦 > 80% 𝑜𝑓 𝑡ℎ𝑒 𝑈𝑇𝑆 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙                                                                    (7) 

 

The input features are x1 for Infill density, x2 for Layer Height, x3 for Print Speed, and x4 for 

Extrusion Temperature. The UTS of the fabricated specimen can be represented (x1, x2, x3, 

x4).  

The logistic classification model uses Equation 8 to make its predictions.  

 𝑃(𝑦 = 1|𝑥1, 𝑥2, 𝑥3, 𝑥4) = 11+𝑒−(𝑤0+𝑤1𝑥1+𝑤2𝑥2+𝑤3𝑥3+𝑤4𝑥4)                                                          (8) 
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Where 𝑃(𝑦 = 1|𝑥1, 𝑥2, 𝑥3, 𝑥4) represents the probability that the UTS of additive 

manufactured specimen belongs to the category labeled as 1. The w0, w1, w2, w3, and w4 are 

the parameters of the model that is expected to learn from the given training data training 

data.  The best values for w0, w1, w2, w3, and w4 need to be found out that will make the 

model as accurate as possible.  

The cost function depicted in Equation 9 make these parameters learn.  

 𝐽(𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4) = 1𝑚 ∑ −𝑦(𝑖). 𝑙𝑜𝑔 (ℎ(𝑥(𝑖))) − (1 − 𝑦(𝑖)). 𝑙𝑜𝑔 (1 − ℎ(𝑥(𝑖)))𝑚1         (9) 

Where 𝐽(𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4) is the cost function which needs to be minimized, m is the 

number of training data provided, y(i) corresponds to the binary output for the i-th specimen, 

and h(x(i)) is the predicted probability of the i-th specimen having a UTS greater than or 

equal to 80% of the base material, based on the current values of w0, w1, w2, w3, and w4. 

Gradient descent is used iteratively to adjust the values of w0, w1, w2, w3, and w4 to minimize 

the cost function 𝐽(𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4).  After that the trained logistic regression model is 

used to predict the UTS of new specimens based on their infill percentage, layer height, print 

speed, and extrusion temperature. Figure 6 shows the obtained confusion matrix and Figure 7 

shows the obtained Receiver Operating Characteristic (ROC) curve.  

 

                     

                             Figure 6. Confusion Matrix obtained for Logistic classification algorithm 
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                                                     Figure 7. ROC curve for Logistic Classification 

 

4.3 Gradient Boosting Classification 

The gradient boosting algorithm was used to iteratively build an ensemble of decision trees 

that minimized the classification error of the training data. The gradient boosting classifier 

works in a similar way. It tries to guess the correct answer to a problem based on a set of 

input values. It uses many smaller decision rules to make its final prediction. Each decision 

rule is like a small, simple model that tries to predict the answer based on a few input values. 

The classifier starts by creating a first model that makes some predictions based on the input 

values. Then it looks at the mistakes that the first model made and creates a second model 

that tries to correct those mistakes. It keeps doing this, creating many models and correcting 

their mistakes, until it has a final model that is very good at predicting the correct answer. 

Each time the classifier creates a new model, it gives more weight to the input values that 

were difficult to predict correctly in the previous models. This helps the classifier focus on 

the input values that are most important for making a good prediction. 

Equation 10 based on Gradient Boosting classification is used to make predictions on new 

specimens.  𝑦(𝑥) = ∑ 𝛾𝑖ℎ𝑖(𝑥)𝑛𝑖=1                                                                                                        (10) 

Where y(x) represents the predicted output (0 or 1) for a given set of input parameters x, the 

Sum(i=1 to n) indicates that the contributions of each individual decision tree in the ensemble 

are summed, with  𝛾𝑖 representing the weight assigned to each tree,  ℎ𝑖(𝑥) represents the 
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output of the i-th decision tree, which depends on the values of the input parameters x. Figure 

8 shows the obtained confusion matrix and Figure 9 shows the obtained Receiver Operating 

Characteristic (ROC) curve. 

                       

                           Figure 8. Confusion Matrix obtained for Gradient Boosting classification algorithm 
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                                          Figure 9. ROC curve for Gradient Boosting Classification 

 

4.4 Decision Tree Classification 

Decision Tree Classification (DTC) Algorithm asks a series of yes or no questions about the 

input variables to make a prediction about the output variable. The questions are organized 

into a tree-like structure, with the initial question at the top (the "root" of the tree) and 

subsequent questions branching off from there. Each question splits the data into two groups 

based on the answer (e.g., infill percentage > 50% or not), and the process continues until a 

final prediction is made at the bottom of the tree (the "leaves"). The goal of the decision tree 

classifier is to ask questions that give the most information about the output variable with the 

fewest number of questions. This is done by selecting the best question to ask at each branch 

of the tree, based on some criterion (e.g., information gain). Once the decision tree is 

constructed, it can be used to make predictions on new data by following the path from the 

root to the appropriate leaf node. Each leaf node corresponds to a particular value of the 

output variable, and the prediction is simply the value associated with the leaf node. 

Let X = {x1, x2, ..., xn} be the set of input variables and y be the output variable. A DTC can 

be represented by a tree T with a set of nodes V = {v1, v2, ..., vk} and edges E = {e1, e2, ..., 

em}, where each node vi corresponds to a question about the input variables and each leaf 

node corresponds to a prediction of the output variable. 
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The construction of the tree can be described using a set of splitting rules that determine how 

to partition the data at each node. Let Q be the set of splitting rules and let q(v) be the 

splitting rule at node v. Then, the tree can be constructed by recursively partitioning the data 

based on the splitting rules until all nodes are leaf nodes. 

The prediction of the DTC can be represented using a set of decision rules that determine 

which leaf node to assign a new input vector x to. Let R be the set of decision rules and let 

r(v) be the decision rule at node v. Then, the prediction of the DTC for input vector x can be 

calculated by Equation 11.  

y = p(x; T) = r(vj), if x satisfies the conditions of the decision rule r(vj) at node vj          (11) 

where vj is the leaf node that x is assigned to based on the decision rules. 

In the present work, the DTC shown in Figure 10 is constructed with the following 

hyperparameters: criterion = 'entropy', max_depth = 6, min_samples_leaf = 1, 

min_samples_split = 2, splitter = 'best'. The criterion parameter specifies the quality of the 

split, with 'entropy' indicating that the information gain criterion is used. The max_depth 

parameter specifies the maximum depth of the tree, limiting the number of questions that can 

be asked. The min_samples_leaf parameter specifies the minimum number of samples 

required to be at a leaf node, while the min_samples_split parameter specifies the minimum 

number of samples required to split an internal node. The splitter parameter specifies the 

strategy used to choose the split at each node, with 'best' indicating that the best split is 

chosen based on the criterion. The DTC is trained on the X_train and y_train data using the 

fit method, allowing it to learn the patterns in the data and construct an appropriate decision 

tree. Figure 11 shows the obtained confusion matrix and Figure 12 shows the obtained 

Receiver Operating Characteristic (ROC) curve. 
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                                   Figure 10. Decision Tree architecture obtained in the present work 
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                           Figure 11. Confusion Matrix obtained for Decision Tree classification algorithm 

 

 

                                            Figure 12. ROC curve for Decision Tree Classification 
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4.5 K-Nearest Neighbours Classification 

The KNN algorithm involves calculating the distance between the new specimen and each of 

the n training samples and selecting the K samples with the smallest distances to the new 

specimen. The value of K is a user-defined parameter and determines how many training 

samples are used to make the prediction. 

The distance between the new specimen and a training sample can be calculated using a 

distance metric such as Euclidean distance. Once the K nearest training samples have been 

identified, the predicted label for the new specimen is assigned based on the majority label 

among the K samples. That is, if the majority of the K nearest samples have a label of 0, then 

the new specimen is assigned a label of 0, and if the majority have a label of 1, then the new 

specimen is assigned a label of 1. Figure 13 shows the obtained confusion matrix and Figure 

14 shows the obtained Receiver Operating Characteristic (ROC) curve.  

 

 

      

 

                  Figure 13. Confusion Matrix obtained for K-Nearest Neighbour classification algorithm 
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                                           Figure 14. ROC curve for K-Nearest Neighbour Classification 

 

Table 2 shows the obtained values of F1-Score of the implemented algorithms.  

 

                                         Table 2. Obtained F1-Score of each implemented algorithms 

                       Algorithms                    Obtained F1-Score 

                 Logistic Classification                               0.7143 

       Gradient Boosting Classification                               0.5714 

           Decision Tree Classification                               0.4286 

    K-Nearest Neighbours Classification                               0.7143 

 

The obtained results indicate that Logistic Classification and K-Nearest Neighbors (KNN) 

Classification performed similarly, both achieving F1 scores of 0.7143. These algorithms 

demonstrated a strong ability to differentiate between the two classes of ultimate tensile 

strength in the dataset. On the other hand, the Gradient Boosting Classification algorithm, an 

ensemble method that combines weak learners to create a more accurate model, yielded a 

lower F1 score of 0.5714. This suggests that, in this particular case, the Gradient Boosting 
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Classifier was not as effective in classifying the material properties as the Logistic and KNN 

classifiers. Lastly, the Decision Tree Classification algorithm demonstrated the lowest 

performance among the tested algorithms, with an F1 score of 0.4286. This result indicates 

that the Decision Tree classifier's ability to accurately classify the material properties based 

on the given dataset was comparatively limited. 

Figure 15 shows the comparison of the AUC score of the implemented algorithms.  

 

 

                                    Figure 15. AUC Score comparison of the implemented algorithms 

 

Considering that both K-Nearest Neighbors (KNN) and Logistic Classification algorithms 

exhibit identical F1 scores, while KNN possesses a superior AUC score, it can be deduced 

that KNN is the more optimal algorithm for classification in this specific scenario. The F1 

score, which represents the harmonic mean of precision and recall, provides a balanced 

evaluation of the model's accuracy. In contrast, the AUC score quantifies the classifier's 

capacity to differentiate between the two classes, with higher scores signifying enhanced 

performance. The observed higher AUC score for KNN demonstrates its increased 

effectiveness in distinguishing between the two classes of ultimate tensile strength within the 

dataset, rendering it the more favorable choice for classification in the context of this 

research. 

 

 



21 

 

5. Conclusion 

In conclusion, this study has successfully investigated the application of supervised machine 

learning algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid 

(PLA) specimens fabricated using the Fused Deposition Modeling (FDM) process. By 

preparing 31 PLA specimens and utilizing input parameters such as Infill Percentage, Layer 

Height, Print Speed, and Extrusion Temperature, we have assessed the accuracy and 

effectiveness of four distinct supervised classification algorithms: Logistic Classification, 

Gradient Boosting Classification, Decision Tree, and K-Nearest Neighbor. 

Our results demonstrate that the K-Nearest Neighbor algorithm outperforms the other 

algorithms, achieving an F1 score of 0.71 and an Area Under the Curve (AUC) score of 0.79. 

This highlights the superior ability of the KNN algorithm in differentiating between the two 

classes of ultimate tensile strength within the dataset, making it the most favorable choice for 

classification in this research context. As the first study to estimate the UTS of PLA 

specimens using machine learning-based classification algorithms, our findings provide 

valuable insights into the potential of these techniques for enhancing the performance and 

accuracy of predictive models in the additive manufacturing domain. This research paves the 

way for future work focused on refining these algorithms, optimizing the parameters, and 

expanding the application of machine learning in additive manufacturing to further improve 

the quality and reliability of 3D-printed components. 
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