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Abstract

This work investigates a method for pre-screening material systems for Selective Laser
Sintering (SLS) using a combination of Revolution Powder Analysis (RPA) and machine learning.
To develop this method, nylon was mixed with alumina or carbon fibers in different wt.% to form
material systems with varying flowability. The materials were measured in a custom RPA device
and the results compared with as-spread layer density and surface roughness. Machine learning
was used to attempt classification of all powders for each method. Ultimately, it was found that
the RPA method is able to reliably classify powders based on their flowability, but as-spread layer
density and surface roughness were not able to be classified.

Introduction

As additive manufacturing (AM) becomes more widespread, an emphasis has been
placed on speeding up development of new materials that offer functionality beyond what is
currently available. This work will focus on one AM process, Selective laser sintering (SLS),
which utilizes a powder feedstock to produce polymeric components. One method of producing
complex materials with SLS is to employ an indirect approach where the feedstock is a mixture
of melting and non-melting components. The melting component, typically a polymer, acts as a
binder for the non-melting components, which add functionality to the composite. Typically,
these composite materials undergo post-processing steps to achieve their desired properties after
their geometric properties have been imparted by the SLS system. Developing new materials for
indirect SLS is especially challenging due to interactions between the constituent materials that
affect their performance in SLS.

Currently, a trial-and-error approach is taken when developing new indirect SLS
materials. Fully testing a new material in a commercial SLS system requires multiple kilograms
of material, a requirement that can be costly and time intensive. Therefore, a pre-screening
process that can quickly determine a material’s suitability for SLS using small volumes of
material can improve the development process. In this paper, relative density, powder flow, and
compaction characteristics are considered as screening criteria.

This work began with the hypothesis that there exists a simple metric to determine a
powder’s flowability and compaction characteristics prior to the SLS process. In other words,
there is a link between this a priori metric and some physical characteristics of the as-spread
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powder in the SLS system. It turns out that this link is difficult to determine and the current
methods of pre-screening SLS material do not explain the differences in manufacturability of
different materials.

Background

A pre-qualifying (or screening) step is often employed in powder-based manufacturing
processes. The purpose of this measurement is to reduce amount of trial and error, and expedite
the process for determining if a powder, or mixture thereof, will work for a given application.
Applications which employ such a step are broad, and include storage in silos, pharmaceuticals,
and packed-bed reactors [1]. The screening process, an empirical step, is often required because
theoretical modeling of the powder behavior is complex. Unfortunately a universal qualifying
methodology does not exist and is impractical; it must reflect the conditions of the powder in the
process under consideration [1]. The screening processes is especially useful if many possible
powder systems have been selected based on application requirements, but have not yet been
proven viable candidates for a given manufacturing process [2].

A multitude of screening metrics and methods for powders in SLS have been studied in
the literature [3]-[6]. Amado et al. proposed that powders for SLS have intrinsic and non-
intrinsic properties [3]. The intrinsic properties, such as melt temperature, are related to the
chemical and physiochemical properties of the powder. Non-intrinsic properties, such as particle
size, are more closely related to the pre-processing and production steps. In the case of SLS, non-
intrinsic properties are those typically associated with “dispersion, packing, and homogeneity” of
each powder layer [7]. The intrinsic properties of powders for SLS play a larger role during laser
irradiation. Powder properties can be further categorized into static and dynamic. Static
properties are those not altered by physical movement and/or do not change during the SLS
process. Dynamic properties are either altered during the SLS process, or experience physical
movement.
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Figure 1: Material property categories for powders in SLS, proposed by Amado et al [3]

Powder layer homogeneity and compaction are directly related to the surface quality and
density of the final parts produced with SLS, and research suggests that powder flowability and
compressibility are the key metrics for predicting this [1]. Unfortunately, a universal method of
measuring these does not exist. On top of that, there is no clear correlation between methods,
making comparison difficult.



A common measurement of powder compressibility is the Hausner Ratio (Eqn. (1), which
relates the bulk to tapped density of the powder, and is explained further in ASTM D7181 [8].
However, the Hausner Ratio does not closely resemble powder spreading in SLS, so some
suggest that it may not be the best measurement [6]. Additionally, the tapped density can be
difficult to perform with repeatability (it is strongly affected by the frequency and amplitude of
tapping) and often has a high standard deviation [9], [10].
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Van den Eynde et al developed a powder flowability testing device which aims to more
closely resemble the stress states during powder spreading in SLS (Figure 11 in Appendix A).
They used a modified Hausner ratio, called Packing Factor (Eqn. (2), which takes into account
powder bed density [6], [11]. However, Packing Factor still uses tap density, an unreliable
measurement. Verbelen et al. further utilized this device to analyze a number of commercial
nylon powders for SLS [5].
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Amado et al. proposed the use of a revolution powder analyzer (RPA), to complement
existing measurement techniques, as it closely resembles the dynamic powder spreading process
during SLS (Figure 11). Schmid and Siegelmeier et al. reviewed the various methods of
measuring powder flowability, cohesion, and packing efficiency [4], and found the RPA to have
the lowest standard deviation, and perhaps, be the best representation of spreading in SLS.

Methods

This work combines existing pre-qualifying metrics with machine learning (ML) to
investigate if a simple material-agnostic method exists to predict powder flow and compaction.
Additionally, other pre-qualifying metrics from literature are evaluated and compared to the RPA
approach.

The RPA method consisted of putting 20 ml of material into a glass jar 55mm diameter
by 27mm height. The jar was placed on a rolling mill and spun at 37 rpm. Side illumination was
used to enhance contrast at the powder-air interface and a video camera was used to capture the
data at 30 frames per second for 60 seconds. The video data was processed in imagelJ to extract
the powder-air interfaces. Figure 2(A) presents a still image from the video data and Figure 2(B)
shows the powder-air interface that is extracted.

Flowability metrics were extracted from the RPA video data by fitting two lines to each
powder-air interface, the left line containing the avalanching powder and the right line containing
the fluidized powder as seen in Figure 2(C). The fit data was broken down into 30-frame
segments and fit statistics were extracted from each segment. A total of 60 segments (1800
frames) were taken for each material. The key statistics measured from each segment were the



mean and standard deviation of the slopes as well as the average root-mean-square error (RMSE)
values. These 6 metrics were used to define the flowability of each data segment.

Figure 2: A still frame of the RPA data for 100%
nylon, showing (A) the raw image, (B), the
powder-air interface highlighted, and (C) A piece-
wise linear regression fit to the powder-air
interface.

The 6 key metrics extracted from each RPA data segment were compiled into feature
vectors and used in a quadratic support vector machine (SVM) to determine if the powders could
be differentiated, as depicted in Figure 3. Classification was performed in Matlab using 5-fold

cross-validation.
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Figure 3: Extraction of flowability metrics from RPA data. From left to right: the powder-air interface is
recorded for a segment of 30 consecutive frames. From each segment, piecewise linear regression
statistics are distilled into a feature vector. The feature vectors are used to train a support vector

machine capable of classifying the powders.



The other pre-qualifying metrics investigated were: Hausner ratio (bulk density and
tapped density), packing factor (spread density and tapped density), pressed density, absolute
density, and spread-layer surface roughness. Bulk density was measured by pouring 70mL of
powder through a funnel (30°, 4.7mm opening) into a 100mL graduated cylinder and measuring
the powder’s mass. Tap density was determined by taking the powder-containing graduated
cylinder from above and tapping on a hard surface from a height of ~15mm for 2 minutes at
roughly 2Hz. Pellets of each powder system were produced in a 1 die press using 1000+10 kgf,
and their outer dimensions measured using a dial caliper. All masses were obtained using a
balance with resolution of £0.001gram. True (absolute) density was measured using helium
pycnometry (Quantachrome Ultrapyc 1200e, 20psi purge, 3-run avg.). Powder bed density was
determined by spreading a 100um layer of powder onto a known volume using the counter-
rotating roller in a 3D-Systems HiQ. The baseplate of known volume was placed on top of
balance with resolution of +0.1gram. A process schematic for these metrics is shown in Figure 4.
Results for bulk, tapped, true, and pellet density are provided in Error! Reference source not
found..

The as-spread surface roughness was measured using a Keyence VHX7000 optical
profilometer?. Each powder was spread into a 500pum deep pocket manually using a doctor blade
(round-edge, 45° blade angle); six replicates of each powder were performed. Five surface
roughness parameters were calculated using the Keyence software for the entire scanned area
(~57mm?); mean height deviation (S.), maximum peak-trough height (S,), RMSE of height
deviation (Sq), mean skewness (Ssk), and mean kurtosis (Sku). The surface roughess parameters
were compiled into feature vectors and used in a quadratic SVM to determine if the powders
could be differentiated. Classification was performed in Matlab using 5-fold cross-validation,
similar to Figure 3.

e, ————

: Structural . A Binder . )
( Component 5 [ )
—— S — S
Bulk Bulk
Density Density
Non-compacted
Measurements
True True
Densit s Density N
b Compaction
Tap Tap Tap
¥
Compacted
Tapped Tapped Tapped ™ ~ Pellet Layer Surface Measurements
Density Density Density Density Density roughness

Figure 4: Pre-qualifying metrics investigated in this study

2 10um step size, 200X magnification, 5 x 5 stitching (57mm? total area)



Two powder systems were investigated in this study: aluminum oxide + nylon, and

carbon fiber + nylon. The alumina/nylon mixture was adapted from Deckers, Shahzad, et al. [14]
with slight modification®. The carbon fiber/nylon* mixture was designed as a proxy for carbon
fiber-reinforced structural polymers. An array of powder mixtures was produced, each mixture
with different weight percentages of polymer binder and structural material. For the remainder of
this document, the names of the powder mixtures will be encoded as “wt.% structural component
- wt.% nylon”. For example, 10C-90N indicates 10 wt.% carbon fiber and 90 wt.% nylon, and
80A-20N indicates 80 wt.% alumina, 20 wt.% nylon.

Results

The RPA data show that there is a clear difference in flowability among the materials
tested. Heat maps of the powder-air interface for two materials, 100N and 10C-90N, are given in
Figure 5. The color scale represents percent likelihood that the interface passes through that
pixel throughout the 60 seconds of RPA data. In both data sets, the material is more stochastic
near the jar edges and more consistent near the center of the interface; however, the 100N
material displays more uniformity than the 10C-90N material.

Figure 5: Powder-air interface heat map for (A) 100% nylon and (B) 90% nylon with 10%
carbon fiber. The color scale represents the percent likelihood that the interface passes
through a given pixel.

The box and whisker plots, Figure 6, show that the different materials have different
distributions for the 6 features, indicating that the material flow properties, as measured with
RPA, are unique for each material.

3 Dry-mixed in high-shear blender (Chulux QF-TB159008) for 10 minutes. Alumina: (Almatis A16 SG, dsp=0.5um),
nylon: PA12 (ALM PA650 dso=55um ). Mixture sieved <250pm

4 Dry-mixed in high-shear blender (Chulux QF-TB159008) for 10 minutes. Nylon: PA12 (ALM PA650 dsp=55um ),
carbon fibers: (Zoltek PX-30 avg. length=100pum, avg. width=7 um).
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Figure 6: Box and whisker plots for the RPA flowability metrics.

Quadratic SVM results indicate that each video segment could be classified with an
accuracy of 93.1%. The misclassification rate is given in the confusion matrix shown in Figure
7. The confusion matrix shows there is no misclassification based on material additive, i.e. no
material with alumina additive was misclassified as one with carbon fibers and vice versa. The
high classification accuracy suggests that all the materials tested inherently have different flow
characteristics; however, the classification does not suggest anything about quality of flow, only
that different materials can reliable be differentiated.



Powder Classification Confusion Matrix (Quadratic SVM)
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Figure 7: Confusion matrix for classifying powders using a quadratic support vector machine.

Despite visual indications that each powder provided a different as-spread surface
roughness (Figure 8), attempts to classify the powders using a quadratic SVM were unsuccessful
(<62.5% accuracy). Figure 9 shows a box and whisker plot for the surface roughness parameters,
showing that many metrics are overlapping for the different materials. For example, a S,
measurement of 0.4mm could be from any of the materials tested. The overlapping nature of
these measurements helps explain why classification was unsuccessful.



Figure 8: Surface roughness of various nylon/CF powders.
A) 100 wt. % nylon, B) 10wt.% CF / 90wt.% nylon
C) 25wt. % CF / 75wt. % nylon, D) 50wt.% CF / 50wt.% nylon
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Figure 9: Surface roughness parameters for CF/nylon powders



The most common flowability and compaction metrics in literature were also investigated:
Hausner ratio (bulk density and tapped density), packing factor (spread density and tapped
density), and pressed density. These results are shown in Figure 10 and



Table 1. Accurate powder classification was not possible with any of these metrics,
indicating that, despite different flow and compaction characteristics for each powder, these
methods do not have a fine-enough resolution to be used for reliable pre-qualification for SLS.
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Figure 10: As-spread layer densities for carbon- and alumina-containing powders.
Relative density calculated by dividing as-spread density by true density obtained by helium pycnometry
Note: 100A* is unsieved alumina, 100A is sieved <250um



Table 1: Densities for powders in this study. The +values correspond to one standard deviation.

Theoretical® & Literature Values Measured Values
True Bulk Tapped True Bulk Tapped Pellet
. . . Hausner . . . Hausner .
Powder | Density | Density | Density Ratio Density | Density | Density Ratio Density
[g/cc] [g/cc] [g/cc] [g/cc] [g/cc] [g/cc] [g/cc]
(1.15-
1 '23)Error!
Eochiines 0.47 0.52 1.11
6
100N 1.02 0.46 0.50 defined. Error! 1.06 10.02 10.02 +0.04 0.65
Bookmark not
defined.
60A- 0.64 0.78 1.23 1.12
4N | 275 | 083 | 099 . L9% 1 001 | 2005 | 2006 | 2002
80A- 0.73 0.91 1.25 1.45
20N Jesl 029 L1 2t 24T +0.01 +0.05 +0.06 +0.01
90A- 0.82 1.07 1.31 1.68
10N el LL4g2 L2 .22 2 +0.02 +0.10 +0.12 +0.03
1.22 1.06 1.29 1.21
7 )
100A 3.90 1.08 1.32 1458 3.88 10.04 10.06 10.10 2.02
(1.15-
1 '23)Error!
(B tostns ef 0.47 0.52 1.11
9
100N 1.02 0.46 0.50 defined. Error! 1.06 10.02 10.02 +0.04 0.65
Bookmark not
defined.
10C-
90N N/A N/A N/A N/A 1.18 0.39 0.47 1.21 0.63
2755CN N/A N/A N/A N/A 1.29 N/A N/A N/A N/A
55%?\1 N/A N/A N/A N/A 1.57 0.48 0.61 1.28 0.68
Conclusion

The RPA method was shown to be sensitive enough for pre-qualification of powder for
SLS, reliably classifying materials using a very low volume of material. However, a link from
the RPA metrics to a physical quantity such as as-spread layer density or surface roughness was
not possible. Without linking the RPA data to a physical indicator of powder flowability, the
results will not be able to predict a material’s suitability for SLS. The RPA method presented
here does show promise as an SLS material screening process and could be used in the future
with a subjective classification of suitable as-spread layers, or possibly, an objective
classification using alternative imaging techniques of the powder surface.

> Weighted sum. E.g. prmixeq = P1 * Wty + pp * Wi,
¢ Van den Eynde et al. 2015 [6]
7 German and Bose 1997 [12]

8 De Oliveira et al. 2019 [7]
 Van den Eynde et al. 2015 [6]
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Appendix A: Pre-qualifying methods from literature
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Figure 11: Left) Spread layer density measurement by Van den Eynde et al. [6]
Right) Schematic of revolution powder analyzer from Amado et al.[3]

References
J. A. H. de Jong, A. C. Hoffmann, and H. J. Finkers, “Properly determine powder
flowability to maximize plant output,” Chem. Eng. Prog. N. Y., vol. 95, no. 4, p. 25, Apr.
1999.
P. Karapatis, “A Sub-Process Approach of Selective Laser Sintering,” Dissertation,
Lausanne, EPFL, Lausanne, 2002.
A. Amado, M. Schmid, G. Levy, and K. Wegener, “ADVANCES IN SLS POWDER
CHARACTERIZATION,” p. 16.
M. Schmid, Laser Sintering with Plastics: Technology, Processes, and Materials.
Miinchen: Carl Hanser Verlag GmbH & Co. KG, 2018. doi: 10.3139/9781569906842.
L. Verbelen, S. Dadbakhsh, M. Van den Eynde, J.-P. Kruth, B. Goderis, and P. Van
Puyvelde, “Characterization of polyamide powders for determination of laser sintering
processability,” Eur. Polym. J., vol. 75, pp. 163—174, Feb. 2016, doi:
10.1016/j.eurpolymj.2015.12.014.
M. Van den Eynde, L. Verbelen, and P. Van Puyvelde, “Assessing polymer powder flow
for the application of laser sintering,” Powder Technol., vol. 286, pp. 151-155, Dec. 2015,
doi: 10.1016/j.powtec.2015.08.004.
I. de Oliveira, F. Vernilli, R. Vieira, and J. V. L. da Silva, “Obtainment of the alumina
polyamide-coated spherical particles,” Powder Technol., vol. 356, pp. 112—-118, Nov. 2019,
doi: 10.1016/j.powtec.2019.08.003.
“ASTM D7181-20.” ASTM, 2020. Accessed: Mar. 05, 2020. [Online]. Available:
https://compass.astm.org/download/D7181.30127.pdf
S. Siegelmeier and F. Wollecke, “Characterizing the Bulk & Flow Behaviour of LS
Polymer Powders,” presented at the SFF, Austin, 2013. Accessed: Oct. 24, 2019. [Online].
Available: https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-28-
Ziegelmeier.pdf
A. Santomaso, P. Lazzaro, and P. Canu, “Powder flowability and density ratios: the impact
of granules packing,” Chem. Eng. Sci., vol. 58, no. 13, pp. 2857-2874, Jul. 2003, doi:
10.1016/S0009-2509(03)00137-4.
M. Van den Eynde, L. Verbelen, and P. Van Puyvelde, “Influence of temperature on the
flowability of polymer powders in laser sintering,” Lyon, France, 2017, p. 190007. doi:
10.1063/1.5016796.
R. M. German and A. Bose, Injection Molding of Metals and Ceramics. Princeton, NJ:
MPIF, 1997.



