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1 Introduction

Additive manufacturing (often denoted by AM), e.g. 3D printing, is nowadays recog-
nized as a very challenging subject of research, also due to the strategic position of AM
technology with respect to many applications. This innovative technology is, at the
same time, disruptive, as well as widespread and transversal. Indeed, the applications
cover several fields, like architecture, medicine, surgery, dentistry, arts. AM is deeply
changing paradigms in design and industrial production in comparison with more tra-
ditional technologies, like casting, stamping, and milling. This kind of technology is
based on the fact that components or complete structures are constructed through
sequences of material layers deposition and/or curing. The layer by layer fashion is
obtained through deposition of fused material (in the Fused Deposition Material -
FDM technology) or by melting/sintering of powders (Selecting Laser Sintering - SLS
and Selective Laser Melting - SLM technologies). Hence, hardening and solidification
of the material, prior to the application of the next layer, occur mainly by thermal
actions and form the bulk part.

In recent years, in the fields of engineering and materials science, large efforts have
been devoted to model AM processes with particular regard to single layer behaviour,
concerning interaction between the temperature and the stress field, heat transfer, and
mechanical aspects (see e.g. [17,18,31]). Also mesoscopic models have been developed
for the layer by layer fashion, for instance applying a lattice Boltzmann method for
the treatment of free surface flows [2, 3]. In a different framework, some interesting
results, that have been recently achieved for modeling epitaxial growth, could be put
into some relation with AM modeling (see, e.g., [15]).

However, it is still necessary to introduce tools able to produce simultaneously op-
timization of printing materials and adjustment of prototyping processes. Thus, in
the present paper we focus on a first typical problem occurring in additive manu-
facturing/3D printing processes: the problem of structural optimization consisting in
trying to find the best way to distribute a material in order to minimize an objective
functional [4, 5, 25, 26]. The shape of the domain is a-priori unknown, while known
quantities are the applied loads as well as regions where we want to have holes or
material. Our main interest is to find regions which should be filled by material in
order to optimize some properties of the sample, which is mathematically translated
in the optimization of a suitable objective functional (denoted by J in the rest of the
paper). Since we are clearly in presence of a free-boundary problem, we decide here
to handle it by means of the well-known phase-field method.

With respect to previous papers in the literature, the main novelties here are twofold.
First, we include in the functional a constraint on the stress σ , which should range
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in the physically elastic domain. In previous papers either such a constraint was not
included or it was imposed pointwise (cf. [10]), but, in that case only partial results
could be obtained on the minimization problem and no optimality conditions could be
rigorously determined.

The second and most important novelty is the derivation of a multiscale phase-field
concept by introducing a second order parameter representing the micro-scale. This
concept allows to obtain functionally graded material (FGM) structures.

The classical approach to shape and topology optimization is using boundary varia-
tions in order to compute shape derivatives and to decrease the functional by deforming
the boundary in a shape descendant way (cf., e.g., [27,28]). Another possibility, espe-
cially in order to deal with the multiscale case, is to adopt the homogenization methods
(cf., e.g., [1, 16]) or the level set method which has been exploited by several authors
(cf., e.g., [9] and references therein). The phase-field approach has been already used
in structural optimization by several authors (cf., e.g., [10, 29, 30, 32]), but still few
analytical results are present in the literature (cf. [6, 7, 24]).

A topology optimization based on homogenization and including a two-scale (micro-
macro) relationship has been introduced in [19] for non linear elastic problems. Their
approach decouples the analysis of the micro structure (performed using a phase field
method) from the macro structural optimization routine which uses a classical SIMP
approach instead. In [14], it is experimentally observed that topologycally optimized
infill structures (e.g., lattice structures) present an improved buckling load compared
to weight with respect to bulk material structures. Regarding topology optimization
for FGM, a possible approach consists in using an unpenalized SIMP method (SIM) to
obtain gray scale regions which can be mapped to different lattice volumes (cf. [8, 12,
23]). Nevertheless, all these approaches do not allow to clearly define the boundaries
of the structure which have to be reconstructed in a second step and might lead to
non-optimal results.

In fact, the present work aims at obtaining a 3D-printed model by means of a multi-
scale phase-field topology optimization scheme, providing at the same time a complete
derivation of the first order optimality conditions. This choice turns out to be math-
ematically tractable. The related analysis is indeed not very different from the one
contained in [6] and we utilize differentiability results already obtained therein. How-
ever, the convex set to which the two order parameters belong is different from the
simplex used in [6], where a vectorial phase field variable is introduced in order to treat
the case of multi-materials. Our approach incorporates the creation of graded material
structures, which could again be generalized to allow for multi-material graded struc-
tures. Moreover, our objective functional contains a constraint on the stress σ which
was not present in [6] and which will prove to be important for the application to the
AM technology, especially in the case of lightweight structures with small material
volume.

The work is organized as follows. In Section 2 the optimization problem is described.
Section 3 presents the main analytical results. In Section 4 we first introduce a numer-
ical algorithm implementing the method, then we discuss the results of a sensitivity
study with respect to a problem parameter, and finally we describe a simple workflow
to obtain a 3D printed structure using an FDM 3D printer. Finally, in Section 5 we
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draw the main conclusions of the problem and possible further outlooks of the pre-
sented work. Notice that other sensitivity analyses and more comparisons with the
single-material cases for a simplified cost functional have been performed in the recent
paper [11] by the same authors.

2 The problem

Let us consider a component located in an open bounded and connected set Ω ⊂ R
3 ,

with a smooth boundary ∂Ω , and let n denote the outward unit normal to ∂Ω . We
assume that ∂Ω is decomposed into ΓD∪Γg , ΓD with positive measure. Indeed, we will
prescribe Dirichlet boundary conditions on ΓD and non-homogeneous Neumann type
prescription (corresponding to a traction applied) on the part Γg . We also introduce
the following notation: we denote by H1

D(Ω;R
d) := {v ∈ H1(Ω;Rd) : v = 0 on ΓD}

and by H(div,Ω) := {v ∈ L2(Ω;Rd×d) : div v ∈ L2(Ω;Rd)} .

As it is known, one of the main characteristic of AM technology is the possibility to
construct objects with prescribed macroscopic and microscopic structure. We aim to
introduce a model to get a combined optimization of the two scales of this structure:
a macroscopic scale corresponding either to the presence of material or to the presence
of no material (i.e. voids), and a microscopic scale corresponding to the microscopic
density of the material. To this purpose we introduce a new double phase-fields model
(cf. also [33] for similar approaches). We let Ω0, Ω1 be two sets of positive measure
contained in Ω such that Ω0∩Ω1 = ∅ . We aim to introduce a model to get a simultane-
ous optimization of the two scales of this structure: a macroscopic scale corresponding
to the presence of material (or voids), and a microscopic scale corresponding to the
microscopic density of the material, when it is present. To this purpose we intro-
duce a new two-scale phase-field model, where the two phase parameters describe the
presence of the material and its density. In particular, the parameter standing for
the microscopic density of the material depends on the macroscopic phase parameter
through an internal constraint. Hence, we first introduce the phase variable ϕ to
denote a macro-scale parameter, meaning that in the regions of Ω where ϕ = 1 we
have the presence of the material, while when ϕ = 0 we have voids (no material). In
order to describe the micro-scale effects (corresponding to possible different densities
of the material) we include in the model a second phase parameter which we denote
by χ related to different microscopic configurations of the object. More precisely, χ is
forced to belong to the interval [0, ϕ] , so that in particular χ is forced to be 0 where
we have voids, i.e. where ϕ = 0 . Note that, within the phase-field approach, for ϕ we
assume that the interface between the two phases (material and voids) is not sharp
but diffuse with small thickness γ (see (2.1)). The same diffuse interface is assumed
for the microscopic density denoted by χ .

Now, let us introduce the optimization problem and make precise the cost functional
depending on the parameters (ϕ, χ) . As far as the cost functional corresponding to
ϕ , we first approximate the standard perimeter term by a multiple of the so-called
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Ginzburg-Landau type functional

(2.1)

∫

Ω

(

W(ϕ)

γ
+ γ
|∇ϕ|2

2

)

dx

where W is a potential function attaining global minima at ϕ = 1 (material) and
ϕ = 0 (void). A typical example of W is the standard double well potential W(ϕ) =
(ϕ−ϕ2)2 . Let us notice that the potential W could include a linear term of the type
∫

Ω
ϕdx . This would correspond to a minimization of the volume of the material we

use to create the sample and so it would be compatible both with the experiments and
also with the analytical assumptions we need to prescribe on W (cf. (H1)). Further-
more, to impose a constraint on the admissible values for the two phase variables, we
introduce in the cost functional (2.5) the following term

∫

Ω

IC(ϕ, χ) dx

where IC(ϕ, χ) denotes the characteristic function of the convex set

(2.2) C := {(ϕ, χ) : ϕ ∈ [0, 1], χ ∈ [0, ϕ]},

that is

IC(ϕ, χ) =

{

0 if (ϕ, χ) ∈ C

+∞ otherwise.

Assuming to deal with a linear elasticity regime problem under the assumption of
small displacements, we denote by u : Ω → R

d the displacement vector and by
ε(u) := (∇u)sym the linearized symmetric strain tensor.

Then, let us introduce the set of admissible designs

Uad := {(u,σ, ϕ, χ) ∈ H1
D(Ω;R

d)× L2(Ω;Rd×d)× (H1(Ω;R))2 : (ϕ, χ) ∈ Cad},(2.3)

based on the set of admissible controls

Cad :=

{

(ϕ, χ) ∈ (H1(Ω;R))2 ∩ C : ϕ = 0 a.e. on Ω0, ϕ = 1 a.e. on Ω1,

∫

Ω

ϕdx = m|Ω|

}

(2.4)

and the convex set C being defined in (2.2). Note that we have included a volume
constraint demanding that only the fraction m ∈ (0, 1) of the available volume is filled
by the material.

The goal of structural topology optimization then is to find an optimal distribution
of this material fraction characterized by the macro and micro phase field parameters
(ϕ, χ) acting as control parameters such that the resulting structure has a maximal
stiffness. Since the inverse of stiffness is flexibility or compliance, we can rephrase this
in terms of the following minimization problem:

(CP) Minimize the cost functional

J (u,σ, ϕ, χ) =κ1

∫

Ω

(

W(ϕ)

γ
+ γ
|∇ϕ|2

2

)

dx+ κ2

∫

Ω

(

IC(ϕ, χ) +
|∇χ|2

2

)

dx(2.5)

+ κ3

∫

Ω

ϕ (f · u) dx+ κ4

∫

Γg

g · u dx+ κ5

∫

Ω

F (σ) dx
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over (u,σ, ϕ, χ) ∈ Uad , and subject to the stress-strain state relation

− divσ = ϕ f in Ω(2.6)

σ · n = g on Γg(2.7)

σ = K(ϕ, χ)ε(u) in Ω(2.8)

where the f ∈ L2(Ω;Rd) is a vector volume force, g ∈ L2(Γg;R
d) denotes a boundary

traction acting on the structure, and K stands for the symmetric, positive definite
elasticity tensor. A possible example of K(ϕ, χ) is the following interpolation matrix

(2.9) K(ϕ, χ) = KM(χ)ϕ3 +KV (χ)(1− ϕ)3,

where, in order to be compatible with a possible sharp interface limit (as γ → 0),
we can choose KV = γ2

K̃V , where K̃V denotes a fixed elasticity tensor (cf. [6]) and,
e.g., KM(χ) = K̃V (χ) = KAχ+ 1

β
KA(1−χ) , with β ∈ (0, 1) . Even if FGM are intrin-

secally heterogeneous, the assumption of asymptotic homogenization can be assumed
within the structure (cf. [13]). Since an experimental validations of the numerical re-
sults goes beyond the scope of this work, we assume a simple linear interpolation for
the material properties, but more complex material models can be directly employed
within this general framework. In this way the object’s topology is defined by the
parameter ϕ , while the stiffness of the material continuously varies according to the
distribution of the parameter χ . Note that the equations (2.6)-(2.8) correspond to
the quasi-static momentum balance equation combined with Dirichlet and Neumann
boundary conditions.

Remark 2.1. Let us note that we could encompass the case of a multi-material graded
structure by assuming the field variable ϕ to be replaced by a vector ϕ . In this case,
we have to rewrite the relation between χ and the new ϕ (depending on the physical
problem we are considering) and consequently introduce in the free energy a new
convex set in place of C in (2.2). Actually, for the sake of simplicity, but without loss
of generality, we restrict ourselves to the case of a scalar variable χ .

Remark 2.2. Let us point out that in the cost functional (2.5), we include the last
term in order to possibly account for the stress constraint, which naturally appears in
applications for example in structural engineering problems where we want the stress
not to exceed some material dependent threshold. In the ideal case, we would like
to impose a maximum stress ratio based on a given stress criterion (e.g., von Mises,
Tresca, Hill, ...), such that

(2.10) σmax = max

(

σe
σy

)

,

where σe is the equivalent stress depending on the chosen criterion and σy the material
dependent yield stress. Since this function is not differentiable, a very popular solution
in the literature of topology optimization with stress constraints (cf., e.g. [20, 21, 34])
is to employ the p-norm function defined as

σPN =

(
∫

Ω

(

σe
σy

)p)1/p

,
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where the parameter p controls the level of smoothness of the function, with p→∞
leading to the max function of Eq. (2.10). Finally, the function F can be taken as

F (σ) =| σPN − 1 |2 .

In the next Section 3 we state our main analytical results concerning the proof of first
order optimality conditions for (CP) .

3 Main results

Let us first introduce some notation in order to rewrite the state system in a weak
form. Given a matrix K , we introduce the product of matrices A , B

〈A,B〉K :=

∫

Ω

A : KB,

where we have used the notation A : B :=
∑d

i,j=1AijBij . Then, the elastic boundary
value problem (2.6–2.8) can be rewritten in a weak formulation as

(3.1) 〈ε(u), ε(v)〉K(ϕ,χ) = G(v, ϕ) ∀v ∈ H1
D(Ω;R

d)

where G(v, ϕ) :=
∫

Ω
ϕ f · v dx+

∫

Γg
g · v and K(ϕ, χ) is the elasticity tensor defined

as in (2.9).

Now, let us consider the following assumptions on the data introduced in Section 1.

Hypothesis 3.1. Assume that there exist positive constants cw , θ , Θ , Λ such that

(H1) W ∈ C1(R) , W ≥ −cw

(H2) Ki,j,k,l ∈ C1,1(R2,R) , i, j, k, l ∈ {1, . . . , d} , Kijkl = Kjikl = Kijlk = Kklij , and

θ|A|2 ≤ K(ϕ, χ)A : A ≤ Θ|A|2, |∂ϕK(ϕ, χ)A : B|+|∂χK(ϕ, χ)A : B| ≤ Λ|A||B| ,

for all symmetric matrices A , B ∈ R
d×d \ {0} and for all ϕ ∈ R

(H3) (f ,g) ∈ L2(Ω;Rd)× L2(Γg;R
d)

(H4) F ∈ C1(Rd×d;R+) is a convex function.

The argument we are introducing exploits the results stated in [6]. Actually, in our
case we have to deal with two state variables (ϕ, χ) and with two control parameters
(u,σ) , so that the proofs have to be adapted to the vectorial case. For the sake of
coherence we also use notations introduce in the same paper.

First, we recall a known result on the state system (3.1) (cf. [6, Thm. 3.1, 3.2]).

Theorem 3.2. For any given (ϕ, χ) ∈ L∞(Ω)×L∞(Ω) , there exists a unique (u,σ) ∈
H1(Ω;Rd) × H(div,Ω) which fulfills (3.1) and (2.8). Moreover, there exist positive
constants C1 and C2 such that

(3.2) ‖(u,σ)‖H1(Ω;Rd)×H(div,Ω) ≤ C1(‖ϕ‖L∞(Ω) + ‖χ‖L∞(Ω) + 1)
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and

(3.3) ‖u1−u2‖H1

D
(Ω;Rd)+‖σ1−σ2‖L2(Ω,Rd×d) ≤ C2

(

‖ϕ1 − ϕ2‖L∞(Ω) + ‖χ1 − χ2‖L∞(Ω)

)

where C2 depends on the problem data and on ‖ϕi‖L∞(Ω) , ‖χi‖L∞(Ω) , i = 1, 2 and
(ui,σi) = S(ϕi, χi) , being S : (L∞(Ω))2 → H1

D(Ω;R
d) × L2(Ω,Rd×d) defined as the

solution control-to-state operator which assigns to a given control (ϕ, χ) a unique
state variable (u,σ) ∈ H1

D(Ω;R
d)× L2(Ω,Rd×d) .

Then, we can state our main result related to the existence of solution to Problem
(CP) and the derivation of first order necessary optimality conditions.

Theorem 3.3. The problem (CP) has a minimizer.

Proof. Let us denote by Gad := {(u,σ, ϕ, χ) ∈ Uad : (u,σ, ϕ, χ) fulfills (3.1)} . By
virtue of (3.1) and the Hypothesis 3.1, and taking v = u in (3.1), we can deduce that
J is bounded from below on Gad , which is not empty. Thus, the infimum of J on
Gad exists and we can find a minimizing sequence {(uk,σk, ϕk, χk)} ⊂ Gad . Moreover,
using (3.2), we obtain that

J (uk,σk, ϕk, χk) ≥ δ

(

γ

2
‖∇ϕk‖

2
L2(Ω) +

1

2
‖∇χk‖

2
L2(Ω)

)

− Cδ

for some δ > 0 and Cδ > 0 . This inequality follows by convexity and the boundedness
of (ϕ, χ) (see, e.g., (2.2)). Hence, by using the fact that ϕk belong to [0, 1] (cf. (2.2))
for all k ∈ N and by means of Poincaré inequality we obtain that the sequence {ϕk}
is bounded in H1(Ω) ∩ L∞(Ω) . The same can be deduced for χk , which is uniformly
bounded, too. Hence, by Theorem 3.2, we have that also the sequences of {(uk,σk)}
of corresponding states are bounded in H1

D(Ω;R
d)×H(div,Ω) and that there exists,

by compactness, some (ū, σ̄, ϕ̄, χ̄) ∈ H1
D(Ω;R

d)×H(div,Ω))× (H1(Ω;R))2 such that
(as k →∞) at least for subsequences

uk → ū weakly in H1
D(Ω;R

d) and strongly in L2(Ω;Rd)(3.4)

σk → σ̄ weakly in L2(Ω;Rd×d)(3.5)

ϕk → ϕ̄ weakly in H1(Ω) and strongly in L2(Ω)(3.6)

χk → χ̄ weakly in H1(Ω) and strongly in L2(Ω) .(3.7)

Moreover, since the set Uad is convex and closed (and so also weakly closed), we also
get (ū, σ̄, ϕ̄, χ̄) ∈ Uad . Using (H1) and the weak lower semicontinuity of IC , of norms
and of F (cf. (H4)), we get

J (ū, σ̄, ϕ̄, χ̄) ≤ lim
k→∞

J (uk,σk, ϕk, χk).

Finally, due to the fact that (uk,σk, ϕk) fulfills (3.1) we can deduce in addition
that (ū, σ̄, ϕ̄) fulfills it because K(ϕk, χk)ε(v) converges strongly to K(ϕ̄, χ̄)ε(v) in
L2(Ω;Rd×d) and so, using (3.4), we get

∫

Ω

K(ϕk, χk)ε(uk) : ε(v) dx→

∫

Ω

K(ϕ̄, χ̄)ε(ū) : ε(v) dx .
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Therefore (ū, σ̄, ϕ̄, χ̄) ∈ Uad turns out to be a minimizer for (CP) .

In order to deduce first order necessary optimality conditions, we first introduce the
linearized system with respect to the variable φ and a direction h in a neighborhood
of (φ̄, χ̄) . We use the notation

(ξh,ηh) = ∂φS(φ̄, χ̄)h,

where (ξh,ηh) satisfies:

− div ηh = fh(3.8)

ηh · n = 0(3.9)

ηh = Kφ(φ̄, χ̄)hε(ū) +K(φ̄, χ̄)ε(ξh).(3.10)

Here ū stand for the first component of S(φ̄, χ̄) . Analogously, we introduce the
linearized system with respect to χ in a general direction h . Letting

(ζh,νh) = ∂χS(φ̄, χ̄)h,

where (ζh,νh) satisfies:

− div νh = 0 in Ω(3.11)

νh · n = 0 on Γg(3.12)

νh = Kχ(φ̄, χ̄)hε(ū) +K(φ̄, χ̄)ε(ζh) in Ω.(3.13)

We can now reformulate the optimal control problem (CP) by means of the so-called
reduced functional

j(ϕ, χ) := J (S(ϕ, χ), ϕ, χ)

which is Fréchet differentiable in (H1(Ω) ∩ L∞(Ω))2 . This fact is a consequence of
the Fréchet differentiability of J (cf. [6, Lemma 4.2]), the differentiability of the
control-to-state operator (cf. [6, Thm. 3.3]) and a standard chain rule formula (cf. [30,
Thm. 2.20]). In particular, we have

∂ϕj(ϕ, χ)h = Ju(u,σ, ϕ, χ)ξ
h + Jσ(u,σ, ϕ, χ)η

h + Jϕ(u,σ, ϕ, χ)

and
∂χj(ϕ, χ)h = Ju(u,σ, ϕ, χ)ζ

h + Jσ(u,σ, ϕ, χ)ν
h + Jχ(u,σ, ϕ, χ).

We can now restate the Problem (CP) in terms of minimizers of the cost functional,
i.e., (CP)R :

min
(ϕ,χ)∈Uad

j(ϕ, χ).(3.14)

Then, in order to find the first order necessary optimality conditions, we introduce the
so-called Lagrangian:

L(u,σ, ϕ, χ,U,Σ) =J (u,σ, ϕ, χ)−

∫

Ω

σ : ε(U) dx+

∫

Ω

f · (ϕU) dx(3.15)

+

∫

Γg

g ·U dx+

∫

Ω

(σ −K(ϕ, χ)ε(u))Σ dx.
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Thus, to get minimizers we consider the partial derivatives Lu and Lσ in direction
h and impose that they are equal to zero. From these relations, it is straightforward,
also by definition of J , to derive the so-called adjoint equations. In particular, we get

div(KT (ϕ̄, χ̄)Σ) = κ3ϕ̄f a.e. in Ω(3.16)

K
T (ϕ̄, χ̄)Σ · n = κ4g a.e. on Γg(3.17)

Σ = ε(U)− κ5Fσ(σ̄) a.e. in Ω.(3.18)

Note that since (ϕ̄, χ̄) is a minimizer and S(ϕ̄, χ̄) = (ū, σ̄) ∈ H1
D(Ω;R

d)×H(div,Ω) ,
(U,Σ) ∈ H1

D(Ω;R
d) × H(div,Ω) the corresponding state and adjoint variables, by

convexity arguments it follows that the following inequality holds

(L(ϕ,χ)(ū, σ̄, ϕ̄, χ̄, Ū, Σ̄), (ϕ, χ)− (ϕ̄, χ̄)) ≥ 0.(3.19)

By means of this process we end up with the following main result.

Theorem 3.4. Let (ϕ̄, χ̄) denote a minimizer of problem (CP)R and S(ϕ̄, χ̄) =
(ū, σ̄) ∈ H1

D(Ω;R
d)×H(div,Ω) , (U,Σ) ∈ H1

D(Ω;R
d)×H(div,Ω) the corresponding

state and adjoint variables. Then, ( ū, σ̄, ϕ̄, χ̄, Ū, Σ̄) fulfills the optimality system
in weak sense obtained coupling the state relations (3.16)-(3.18) and the gradient
inequality arising from (3.19):

κ1

∫

Ω

W ′(ϕ̄)

γ
(ϕ− ϕ̄) dx+ κ1γ

∫

Ω

∇ϕ̄∇(ϕ− ϕ̄) dx+ κ2

∫

Ω

∇χ̄∇(χ− χ̄) dx

+

∫

Ω

f · (Ū+ κ3ū)(ϕ− ϕ̄) dx− κ3

∫

Ω

Kϕ(ϕ̄, χ̄)Σ : ε(ū)(ϕ− ϕ̄) dx

− κ3

∫

Ω

Kχ(ϕ̄, χ̄)Σ : ε(ū)(χ− χ̄) dx ≥ 0

for all (ϕ, χ) ∈ Cad and assuming κ4 = κ3 .

The proof of this Theorem follows once (3.19) is satisfied by definition of L in (3.15)
and recalling the cost functional (2.5).

4 Numerical results

In this section we present an application of the presented analytical results in the en-
gineering practice. In the first part of this section we derive the discrete formulation of
the optimization problem (CP) neglecting the stress constraint, i.e., setting κ5 = 0 ,
successively, we discuss a sensitivity study of the resulting optimized 2D structure, and
finally we present a possible procedure to obtain from numerical results a 3D printed
FGM structure. The presented results are obtained using FEniCS [22], an open source
library to automate the solution of mathematical models based on differential equa-
tions. Further numerical results on the sensitivity with respect to other parameters
and more comparisons with the single-material case can be found in [11].

10



4.1 Discrete problem formulation

Allen-Cahn gradient flow

To obtain a discrete version of the problem (CP) we employ Allen-Cahn gradient flow
approach, a steepest descendant pseudo-time stepping method. Given a fixed time-
step increment τ the Allen-Cahn gradient flow leads to the following set of equations:

(4.1)
γϕ
τ

∫

Ω

(ϕn+1 − ϕn)(ϕ− ϕn+1) dx+ κ1γ

∫

Ω

∇ϕn+1∇(ϕ− ϕn+1) dx−

κ3

∫

Ω

Kϕ(ϕn, χn)Σ : ε(un)(ϕ−ϕn+1) dx+
κ1

γ

∫

Ω

W ′(ϕn)(ϕ−ϕn+1) dx ≥ 0, ∀ (ϕ, χ) ∈ Cad,

(4.2)
γχ
τ

∫

Ω

(χn+1 − χn)(χ− χn+1)d dx+ κ2

∫

Ω

∇χn+1 · ∇(χ− χn+1) dx−

κ3

∫

Ω

Kχ(ϕn, χn)Σ : ε(un)(χ− χn+1) dx ≥ 0, ∀ (ϕ, χ) ∈ Cad

to be solved under the volume constraint:

(4.3)

∫

Ω

(ϕn+1 −m) dx = 0.

Finite element discretization

We then discretize the physical domain Ω employing four triangular meshes Qu , Qϕ ,
Qχ and QU , one for each variable of the problem. At the nodes of each triangular
element we interpolate, by means of piecewise linear basis functions, the corresponding
variables u , ϕ , χ , and U together with their variations v , vϕ , vχ and vU , obtaining
the following finite element expansions:

u ≈ Nuũ, v ≈ Nuṽ,

ϕ ≈ Nϕϕ̃, vϕ ≈ Nϕṽϕ,

χ ≈ Nχχ̃, vχ ≈ Nχṽχ,

U ≈ NUŨ, vU ≈ NUṽU,

where Nu,Nϕ,Nχ,NU are the piecewise linear shape function vectors or matrices
which interpolate the nodal degrees of freedoms ũ, ϕ̃, χ̃, Ũ and their variations ṽ, ṽϕ, ṽχ, ṽU .
Finally, the Lagrange multiplier λ used to constrain the volume is applied using a con-
stant scalar value on the domain Ω .

We can now write the discretized version of the optimal control problem (CP), as

11



follows:
(4.4)

1

τ













0 0 0 0 0

0 0 0 0 0

0 0 Mϕϕ 0 Mϕλ

0 0 0 Mχχ 0

0 0 Mλϕ 0 0

























ũ

Ũ

ϕ̃

χ̃

λ̃













+













Kuu 0 0 0

0 KUU 0 0 0

0 0 Kϕϕ 0 0

0 0 0 Kχχ 0

0 0 0 0 0

























ũ

Ũ

ϕ̃

χ̃

λ̃













=













f

F+ qσ

qϕ + qs + qψ

qχ + qs′

qλ













with the matrix and vector terms defined as:

Kuu =

∫

Ω

∇Nu
T
K∇Nu dΩ,

KUU =

∫

Ω

∇NU
T
K∇NU dΩ,

Mϕϕ = γϕ

∫

Ω

NT
ϕNϕ dΩ,

Kϕϕ = κ1γϕ

∫

Ω

∇NT
ϕ∇Nϕ dΩ,

Kχχ = κ2γχ

∫

Ω

∇NT
χ∇Nχ dΩ,

Mχχ = γχ

∫

Ω

NT
χNχ dΩ,

Mλϕ = τ

∫

Ω

NT
λNϕdΩ =

(

Mϕλ
)T

,

f =

∫

ΓN

Nu
Tg dΓ,

F =

∫

ΓN

NT
Ug dΓ,

qσ = κ5

∫

Ω

NT
UFσ(σn+1), dΩ,

qϕ =
γϕ
τ

∫

Ω

(

NT
ϕNϕ

)

ϕ̃n dΩ = Mϕϕϕ̃n,

qλ =

∫

Ω

mdΩ,

qs =

∫

Ω

NT
ϕKϕ(ϕ̃n, χ̃n)Σn+1 : ε(un+1) dΩ,

qψ =
κ3

γϕ

∫

Ω

NT
ϕW

′(ϕ̃n) dΩ.

qχ =
γχ
τ

∫

Ω

(NT
χNχ)χ̃n dΩ = Mχχχ̃n,

qs′ =

∫

Ω

NT
ϕKχ(ϕ̃n, χ̃n)Σn+1 : ε(un+1) dΩ.
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A graded material algorithm

To obtain a topologically optimized structure with continuously varying material prop-
erties, we solve the problem in (4.4) employing a staggered iterative approach as de-
scribed in Algorithm 1. In fact, the linear system in (4.4) can be split into three linear
systems which we solve separately: the state equation system

(4.5) Kuuũ = f ,

the adjoint problem system

(4.6) KUUŨ = F+ qσ,

and the phase-field system

(4.7)
1

τ





Mϕϕ 0 Mϕλ

0 Mχχ 0

Mλϕ 0 0









ϕ̃

χ̃

λ̃



+





Kϕϕ 0 0

0 Kχχ 0

0 0 0









ϕ̃

χ̃

λ̃



 =





qϕ + qs + qψ

qχ + qs′

qλ



 .

The graded-material optimization routine defined in Algorithm 1 presents an iter-
ative procedure where we first solve the state equation system (4.5) to get the solution
vector ũn+1 , secondly we need to solve the adjoint system (4.6), and finally we evaluate
the phase-field system (4.7) to obtain the two phase-field solution vectors ϕ̃∗

n+1 , χ̃
∗

n+1

together with the Lagrange multiplier λ̃n+1 . Every iteration ends calling the function
rescale , as defined in Algorithm 2 to impose the constraints on the phase-field vari-
ables ϕ and χ directly at the nodal values. The graded-material optimization

routine is then repeated until either the maximum number of iteration (maxiter ) is
reached or the L2−norm of both phase-field variable increment ∆ϕ =‖ ϕn+1−ϕn ‖L2

and microscopic density variable increment ∆χ =‖ χn+1 − χn ‖L2 are below a given
tolerance (tol ).

4.2 Optimization of a cantilever beam

We now apply the implemented numerical method to solve a two-dimensional op-
timization problem. We choose to solve the cantilever beam problem depicted in
Figure 1, where a = 200mm , b = 100mm , g = (0,−600) [N/mm] , f = 0 and with
an upper bound for the volume filling rate m equal to 0.8. We choose a material
having Young modulus E = 12.5GPa, Poisson coefficient ν = 0.25 , and yield stress
σy = 45MPa (ABS plastic). We set the parameter β = 1/6 , γϕ = 0.01 , κ1 = 400 ,
κ3 = κ4 = κ5 = 1 , and τ = 1E − 6 . For our sensitivity study we decided to vary the
penalty parameter κ2 of the gradient term

∫

Ω
∇χn+1 · ∇(χ − χn+1) dx among three

different values: 40, 4000, and 400000.

Figure 2 shows the result for the reference optimized structure obtained using a single-
material, i.e., setting β = 1 , while in Figure 3 we can observe the FGM structures for
the three different values of κ2 . From this figure it is evident the strong influence of
κ2 on the final distribution of the variable χ . In particular, we can observe how a too
high value of the penalty parameter κ2 delivers a structure where the variable χ is

13



Algorithm 1: graded-material optimization

input : Q , Qϕ , Qχ , Qλ , ϕ0 , χ0

output: Optimal topology
1 ϕn ← ϕ0

2 χn ← χ0

3 while (∆ϕ ≥ tol or ∆χ ≥ tol) and n ≤ maxiter do
4 ũn+1 ← solve(4.5)

5 Ũn+1 ← solve(4.6)

6 (ϕ̃∗

n+1, χ̃
∗

n+1, λ̃n+1)← solve(4.7)

7 ϕ̃n+1 ← rescale
(

ϕ̃∗

n+1, [0, 1]
)

8 χ̃n+1 ← rescale
(

χ̃∗

n+1, [0, ϕ]
)

9 update(∆ϕ )
10 ϕn ← ϕn+1

11 χn ← χn+1

12 end

Algorithm 2: rescale

input : ω , [a, b]
output: Constrained solution vector

1 forall ωi ∈ ω do
2 if ωi < a then
3 ωi = a
4 else if ωi > b then
5 ωi = b
6 else
7 do nothing
8 end

9 end
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not able to properly distribute (see Figure 3c), while on the other hand small values
of κ2 allows too strong oscillations and the algorithm do not converge anymore (see
Figure 3a). A reasonable choice for the parameter κ2 seems to be the one reported
in Figure 3b, where the variable χ gradually vary from the baseline bulk material
to regions where a lower stiffness is required. In Figure 4 we can observe that the
maximum value of the von Mises stress is kept always below σy , fulfilling the prescribed
stress constraint. The overall stress distribution is very similar in all three cases. The
major difference lies in the higher maximum stress values concentrated at the left
corners of the structures.

x

y

ΓD Ω

a

b

ΓN

g

Figure 1: Cantilever beam: Problem definition.

Figure 2: Cantilever beam: Reference structure obtained using a single material.

In order to estimate the total amount of material in the structure, we define a material
fraction index mχ as:

mχ =
1

| Ω |

∫

Ω

χdΩ,

which can be considered as a measure of the global amount of material used to print
the structure. Table 1 reports the values of both the compliance and the material
fraction index mχ for both the single-material case and for the graded-material results.
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(a) κχ = 40 (b) κχ = 4000 (c) κχ = 400000

Figure 3: Cantilever beam: Sensitivity study of the graded-material structure with
respect to the parameter κ2 . χ value distribution.

(a) κχ = 40 (b) κχ = 4000 (c) κχ = 400000

Figure 4: Cantilever beam: Sensitivity study of the graded-material structure with
respect to the parameter κ2 . Von Mises stress value distribution.

The lowest value of the compliance is achieved when a single stiffer material is used.
Nevertheless, it can be observed that employing a graded-material method we are able
to obtain FGM structures with a relatively low compliance using considerably less
material. We want to remark here that in general the stiffness for graded-material
structure do not scale linearly with the density, but it is strongly influenced by the
micro-structure of the partially filled regions. This effect is not yet included with the
present implementation of the method and is left to future investigations.

Table 1: Cantilever beam: Sensitivity study of compliance and material fraction index
mχ for the parameter κ2 .

κ2 compliance
[mm

N

]

mχ convergence

40 7325 0.241 NO
4000 4166 0.527 YES
400000 3762 0.673 YES

full dense material 3130 0.8 YES
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4.3 A 3D printing workflow for topologically optimized FGM

structures

The topologically optimized cantilever beam of Figure 3b is printed using the Fused De-
position Modeling (FDM) 3D printer located at the ProtoLab http://www-4.unipv.

it/3d/our-services/protolab of the University of Pavia (see Figure 5a). This ma-
chine prints a filament of thermoplastic polymer which is first heated and then extruded
through a printing nozzle. The extruded filament is deployed layer by layer until the
desired object is obtained (Figure 5b). Figure 6 presents a very simple workflow to ob-
tain from the numerical solution a 3D printed object. To generate a printable structure
we decided to set a threshold in the χ distribution, separating the resulting structure
in two regions which we print using two different plastic materials. We then extract
the .STL files of the these two regions which can be now extruded and directly printed
using the FDM machine. This extremely intuitive approach to generate printable AM
structure is well suited for plastic components but it is yet not optimal. In fact, it does
not allow to locally vary the material density as we observe instead in the numerical
results. We are currently working on a more complex approach based on local density
mapping but we leave it to forthcoming contributions.

(a) (b)

Figure 5: FDM machine at ProtoLab and 3D printed cantilever beam

5 Conclusions

The present work analyses a phase-field approach for graded materials suitable to
obtain topologically optimized structures for 3D printing processes, including stress
constraints. Together with a rigorous analysis of the problem a numerical algorithm
has been implemented to obtain FGM structures. A sensitivity study with respect to
a problem parameter has been conducted comparing the resulting structures with a
single-material reference result. Moreover, we have introduced a simple but effective
workflow which from the numerical solutions leads to a 3D printed structure. Such a
workflow allows us to print an optimized FGM structure using an FDM 3D printer.
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Extraction of 
STL files

Extrusion

Printing

(a)

(d) (c)

(b)

Figure 6: Description of possible workflow to obtain from a continuous χ distribution
a 3D printed object: In the first step the continuous χ distribution (a) is splitted in
two parts and the corresponding .STL files are generate (b), in a second step the 2D
geometries are extruded to obtain a printable file (c) which can be directly sent to the
FDM machine to obtain the printed structure (d).

As further outlooks for the present contribution we plan to investigate the influence
of the microstructure on the material model and to extend the numerical algorithm to
3D problems.
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